磁极子达到十万个玻尔磁子。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pavel A Usachev, Vladimir N Kats, Leonid A Shelukhin, Victor V Pavlov, Dmitry V Averyanov, Ivan S Sokolov, Oleg E Parfenov, Oleg A Kondratev, Alexander N Taldenkov, Alexander V Inyushkin, Andrey M Tokmachev, Vyacheslav G Storchak
{"title":"磁极子达到十万个玻尔磁子。","authors":"Pavel A Usachev, Vladimir N Kats, Leonid A Shelukhin, Victor V Pavlov, Dmitry V Averyanov, Ivan S Sokolov, Oleg E Parfenov, Oleg A Kondratev, Alexander N Taldenkov, Alexander V Inyushkin, Andrey M Tokmachev, Vyacheslav G Storchak","doi":"10.1039/d4mh01156b","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of light to manipulate fundamental interactions in a medium is central to research in optomagnetism and applications in electronics. A prospective approach is to create composite quasiparticles, magnetic polarons, highly susceptible to external stimuli. To control magnetic and transport properties by weak magnetic and electric fields, it is important to find materials that support photoinduced magnetic polarons with colossal net magnetic moments. Here, we demonstrate that magnetic polarons with a record-high magnetic moment, reaching and exceeding a hundred thousand Bohr magnetons, can be optically generated in EuO, an archetypal ferromagnetic semiconductor. The phenomenon is established employing the photoinduced Faraday effect studied in EuO films by a two-color pump-probe technique. The giant magnetic polarons are generated just above the Curie temperature once EuO is exposed to photons of an energy exceeding the bandgap. Picosecond temporal dynamics of magnetic polarons follows relaxation processes in the spin-split 5d conduction band occupied by the photoexcited electron. The study is expected to provide a platform for implementation of an efficient optical control over the magnetic state in solids.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic polarons reach a hundred thousand Bohr magnetons.\",\"authors\":\"Pavel A Usachev, Vladimir N Kats, Leonid A Shelukhin, Victor V Pavlov, Dmitry V Averyanov, Ivan S Sokolov, Oleg E Parfenov, Oleg A Kondratev, Alexander N Taldenkov, Alexander V Inyushkin, Andrey M Tokmachev, Vyacheslav G Storchak\",\"doi\":\"10.1039/d4mh01156b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability of light to manipulate fundamental interactions in a medium is central to research in optomagnetism and applications in electronics. A prospective approach is to create composite quasiparticles, magnetic polarons, highly susceptible to external stimuli. To control magnetic and transport properties by weak magnetic and electric fields, it is important to find materials that support photoinduced magnetic polarons with colossal net magnetic moments. Here, we demonstrate that magnetic polarons with a record-high magnetic moment, reaching and exceeding a hundred thousand Bohr magnetons, can be optically generated in EuO, an archetypal ferromagnetic semiconductor. The phenomenon is established employing the photoinduced Faraday effect studied in EuO films by a two-color pump-probe technique. The giant magnetic polarons are generated just above the Curie temperature once EuO is exposed to photons of an energy exceeding the bandgap. Picosecond temporal dynamics of magnetic polarons follows relaxation processes in the spin-split 5d conduction band occupied by the photoexcited electron. The study is expected to provide a platform for implementation of an efficient optical control over the magnetic state in solids.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01156b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01156b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光操纵介质中基本相互作用的能力是光磁学研究和电子学应用的核心。一种前瞻性的方法是创造极易受外部刺激影响的复合准粒子--磁极子。要通过弱磁场和电场控制磁性和传输特性,必须找到支持具有巨大净磁矩的光诱导磁极子的材料。在这里,我们证明了可以在典型的铁磁性半导体 EuO 中以光学方式产生具有创纪录高磁矩的磁极子,其磁矩达到并超过十万个玻尔磁子。这一现象是利用双色泵浦探针技术在氧化铕薄膜中研究的光诱导法拉第效应确定的。一旦氧化铕受到能量超过带隙的光子照射,就会在居里温度之上产生巨磁极子。磁极子的皮秒时间动态遵循光激发电子占据的自旋分裂 5d 导带的弛豫过程。这项研究有望为实现对固体磁态的高效光学控制提供一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic polarons reach a hundred thousand Bohr magnetons.

The ability of light to manipulate fundamental interactions in a medium is central to research in optomagnetism and applications in electronics. A prospective approach is to create composite quasiparticles, magnetic polarons, highly susceptible to external stimuli. To control magnetic and transport properties by weak magnetic and electric fields, it is important to find materials that support photoinduced magnetic polarons with colossal net magnetic moments. Here, we demonstrate that magnetic polarons with a record-high magnetic moment, reaching and exceeding a hundred thousand Bohr magnetons, can be optically generated in EuO, an archetypal ferromagnetic semiconductor. The phenomenon is established employing the photoinduced Faraday effect studied in EuO films by a two-color pump-probe technique. The giant magnetic polarons are generated just above the Curie temperature once EuO is exposed to photons of an energy exceeding the bandgap. Picosecond temporal dynamics of magnetic polarons follows relaxation processes in the spin-split 5d conduction band occupied by the photoexcited electron. The study is expected to provide a platform for implementation of an efficient optical control over the magnetic state in solids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信