Rocío Sayago-Carro, Irene Barba-Nieto, Natividad Gómez-Cerezo, José A Rodriguez, Marcos Fernández-García, Anna Kubacka
{"title":"优化材料,提高二氧化碳的利用率:调整 In2O3 基光热催化剂上的钴-钴相互作用。","authors":"Rocío Sayago-Carro, Irene Barba-Nieto, Natividad Gómez-Cerezo, José A Rodriguez, Marcos Fernández-García, Anna Kubacka","doi":"10.1021/acsami.4c14280","DOIUrl":null,"url":null,"abstract":"<p><p>The valorization of CO<sub>2</sub> is an important challenge within the current panorama, since this molecule is probably the main contributor to climate change. In this study, the synthesis of materials based on a nanostructured batonnet-type indium oxide is carried out. In them, different amounts of Co are introduced, varying between 2 and 8% mol. It is verified that the most active sample in the transformation of carbon dioxide to carbon monoxide contains 6 mol %. of Co. This sample's activity under dual excitation exceeds the thermal counterpart by more than 30%. After carrying out a complete physical and chemical characterization with the help of X-ray absorption spectroscopy and other techniques, it is shown that catalysts with amounts of cobalt equal to or below 4 mol % contain isolated single-atom species, while those with higher amounts of metal display a Co-Co interaction which triggers the evolution of the samples under reaction conditions. The optimum control of this Co-Co interaction and the nature of the final cobalt-containing species determine dual photothermal catalytic properties. This work establishes a structure-activity relationship to interpret the catalytic behavior of highly dispersed subnanometric cobalt species, and thus an avenue to optimize the photothermal valorization of carbon dioxide.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Materials to Boost the Valorization of CO<sub>2</sub>: Tuning Cobalt-Cobalt Interactions on In<sub>2</sub>O<sub>3</sub>-Based Photothermal Catalysts.\",\"authors\":\"Rocío Sayago-Carro, Irene Barba-Nieto, Natividad Gómez-Cerezo, José A Rodriguez, Marcos Fernández-García, Anna Kubacka\",\"doi\":\"10.1021/acsami.4c14280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The valorization of CO<sub>2</sub> is an important challenge within the current panorama, since this molecule is probably the main contributor to climate change. In this study, the synthesis of materials based on a nanostructured batonnet-type indium oxide is carried out. In them, different amounts of Co are introduced, varying between 2 and 8% mol. It is verified that the most active sample in the transformation of carbon dioxide to carbon monoxide contains 6 mol %. of Co. This sample's activity under dual excitation exceeds the thermal counterpart by more than 30%. After carrying out a complete physical and chemical characterization with the help of X-ray absorption spectroscopy and other techniques, it is shown that catalysts with amounts of cobalt equal to or below 4 mol % contain isolated single-atom species, while those with higher amounts of metal display a Co-Co interaction which triggers the evolution of the samples under reaction conditions. The optimum control of this Co-Co interaction and the nature of the final cobalt-containing species determine dual photothermal catalytic properties. This work establishes a structure-activity relationship to interpret the catalytic behavior of highly dispersed subnanometric cobalt species, and thus an avenue to optimize the photothermal valorization of carbon dioxide.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c14280\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14280","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimizing Materials to Boost the Valorization of CO2: Tuning Cobalt-Cobalt Interactions on In2O3-Based Photothermal Catalysts.
The valorization of CO2 is an important challenge within the current panorama, since this molecule is probably the main contributor to climate change. In this study, the synthesis of materials based on a nanostructured batonnet-type indium oxide is carried out. In them, different amounts of Co are introduced, varying between 2 and 8% mol. It is verified that the most active sample in the transformation of carbon dioxide to carbon monoxide contains 6 mol %. of Co. This sample's activity under dual excitation exceeds the thermal counterpart by more than 30%. After carrying out a complete physical and chemical characterization with the help of X-ray absorption spectroscopy and other techniques, it is shown that catalysts with amounts of cobalt equal to or below 4 mol % contain isolated single-atom species, while those with higher amounts of metal display a Co-Co interaction which triggers the evolution of the samples under reaction conditions. The optimum control of this Co-Co interaction and the nature of the final cobalt-containing species determine dual photothermal catalytic properties. This work establishes a structure-activity relationship to interpret the catalytic behavior of highly dispersed subnanometric cobalt species, and thus an avenue to optimize the photothermal valorization of carbon dioxide.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.