高熵普鲁士蓝类似物衍生的异质结构纳米粒子作为可充电锌-空气电池的双功能氧转换电催化剂。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-11-13 Epub Date: 2024-11-04 DOI:10.1021/acsami.4c13387
Wuttichai Tanmathusorachai, Sofiannisa Aulia, Mia Rinawati, Ling-Yu Chang, Chia-Yu Chang, Wei-Hsiang Huang, Ming-Hsien Lin, Wei-Nien Su, Brian Yuliarto, Min-Hsin Yeh
{"title":"高熵普鲁士蓝类似物衍生的异质结构纳米粒子作为可充电锌-空气电池的双功能氧转换电催化剂。","authors":"Wuttichai Tanmathusorachai, Sofiannisa Aulia, Mia Rinawati, Ling-Yu Chang, Chia-Yu Chang, Wei-Hsiang Huang, Ming-Hsien Lin, Wei-Nien Su, Brian Yuliarto, Min-Hsin Yeh","doi":"10.1021/acsami.4c13387","DOIUrl":null,"url":null,"abstract":"<p><p>In response to energy challenges, rechargeable zinc-air batteries (RZABs) serve as an ideal platform for energy storage with a high energy density and safety. Nevertheless, addressing the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in RZAB requires highly active and robust electrocatalysts. High-entropy Prussian blue analogues (HEPBAs), formed by mixing diverse metals within a single lattice, exhibit enhanced stability due to their increased mixing entropy, which lowers the Gibbs free energy. HEPBAs innately enable sacrificial templating, an effective way to synthesize complex structures. Impressively, in this study, we successfully transform HEPBAs into exquisite multiphase (multimetallic alloy, metal carbide, and metal oxide) heterostructure nanoparticles through a controlled synthesis process. The elusive multiphase heterostructure nanoparticles manifested two active sites for selective ORR and OER. By integrating CNT into HEPBA-derived nanoparticles (HEPBA/CNT-800), the HEPBA/CNT-800 demonstrates superior activity toward both ORR (<i>E</i><sub>1/2</sub> = 0.77 V) in a 0.1 M KOH solution and the OER (η = 330 mV at 50 mA cm<sup>-2</sup>) in a 1 M KOH solution. The RZAB with a HEPBA/CNT-based air electrode demonstrated an open-circuit voltage of 1.39 V and provided a significant energy density of 71 mW cm<sup>-2</sup>. Moreover, the charge and discharge cycles lasting up to 40 h at a current density of 5 mA cm<sup>-2</sup> demonstrate its excellent stability. This work provides an alternative avenue for the rational design of HEPBA's derivative for a sustainable rechargeable metal-air battery platform.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Entropy Prussian Blue Analogue Derived Heterostructure Nanoparticles as Bifunctional Oxygen Conversion Electrocatalysts for the Rechargeable Zinc-Air Battery.\",\"authors\":\"Wuttichai Tanmathusorachai, Sofiannisa Aulia, Mia Rinawati, Ling-Yu Chang, Chia-Yu Chang, Wei-Hsiang Huang, Ming-Hsien Lin, Wei-Nien Su, Brian Yuliarto, Min-Hsin Yeh\",\"doi\":\"10.1021/acsami.4c13387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to energy challenges, rechargeable zinc-air batteries (RZABs) serve as an ideal platform for energy storage with a high energy density and safety. Nevertheless, addressing the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in RZAB requires highly active and robust electrocatalysts. High-entropy Prussian blue analogues (HEPBAs), formed by mixing diverse metals within a single lattice, exhibit enhanced stability due to their increased mixing entropy, which lowers the Gibbs free energy. HEPBAs innately enable sacrificial templating, an effective way to synthesize complex structures. Impressively, in this study, we successfully transform HEPBAs into exquisite multiphase (multimetallic alloy, metal carbide, and metal oxide) heterostructure nanoparticles through a controlled synthesis process. The elusive multiphase heterostructure nanoparticles manifested two active sites for selective ORR and OER. By integrating CNT into HEPBA-derived nanoparticles (HEPBA/CNT-800), the HEPBA/CNT-800 demonstrates superior activity toward both ORR (<i>E</i><sub>1/2</sub> = 0.77 V) in a 0.1 M KOH solution and the OER (η = 330 mV at 50 mA cm<sup>-2</sup>) in a 1 M KOH solution. The RZAB with a HEPBA/CNT-based air electrode demonstrated an open-circuit voltage of 1.39 V and provided a significant energy density of 71 mW cm<sup>-2</sup>. Moreover, the charge and discharge cycles lasting up to 40 h at a current density of 5 mA cm<sup>-2</sup> demonstrate its excellent stability. This work provides an alternative avenue for the rational design of HEPBA's derivative for a sustainable rechargeable metal-air battery platform.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c13387\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13387","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为应对能源挑战,可充电锌-空气电池(RZAB)以其高能量密度和安全性成为理想的储能平台。然而,要解决 RZAB 中缓慢的氧还原反应(ORR)和氧进化反应(OER)问题,需要高活性、高稳定性的电催化剂。高熵普鲁士蓝类似物(HEPBAs)是在单个晶格内混合多种金属形成的,由于其混合熵增加,降低了吉布斯自由能,因此具有更高的稳定性。HEPBAs 天生具有牺牲模板的能力,是合成复杂结构的有效方法。令人印象深刻的是,在本研究中,我们通过受控合成工艺,成功地将 HEPBAs 转化为精致的多相(多金属合金、金属碳化物和金属氧化物)异质结构纳米颗粒。这种难以捉摸的多相异质结构纳米粒子具有两个活性位点,可用于选择性 ORR 和 OER。通过将 CNT 集成到 HEPBA 衍生的纳米粒子(HEPBA/CNT-800)中,HEPBA/CNT-800 对 0.1 M KOH 溶液中的 ORR(E1/2 = 0.77 V)和 1 M KOH 溶液中的 OER(η = 330 mV,50 mA cm-2)均表现出卓越的活性。采用基于 HEPBA/CNT 的空气电极的 RZAB 的开路电压为 1.39 V,能量密度高达 71 mW cm-2。此外,在电流密度为 5 mA cm-2 的条件下,充放电周期长达 40 小时,这表明它具有出色的稳定性。这项工作为合理设计 HEPBA 的衍生物以实现可持续的可充电金属空气电池平台提供了另一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Entropy Prussian Blue Analogue Derived Heterostructure Nanoparticles as Bifunctional Oxygen Conversion Electrocatalysts for the Rechargeable Zinc-Air Battery.

High-Entropy Prussian Blue Analogue Derived Heterostructure Nanoparticles as Bifunctional Oxygen Conversion Electrocatalysts for the Rechargeable Zinc-Air Battery.

In response to energy challenges, rechargeable zinc-air batteries (RZABs) serve as an ideal platform for energy storage with a high energy density and safety. Nevertheless, addressing the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in RZAB requires highly active and robust electrocatalysts. High-entropy Prussian blue analogues (HEPBAs), formed by mixing diverse metals within a single lattice, exhibit enhanced stability due to their increased mixing entropy, which lowers the Gibbs free energy. HEPBAs innately enable sacrificial templating, an effective way to synthesize complex structures. Impressively, in this study, we successfully transform HEPBAs into exquisite multiphase (multimetallic alloy, metal carbide, and metal oxide) heterostructure nanoparticles through a controlled synthesis process. The elusive multiphase heterostructure nanoparticles manifested two active sites for selective ORR and OER. By integrating CNT into HEPBA-derived nanoparticles (HEPBA/CNT-800), the HEPBA/CNT-800 demonstrates superior activity toward both ORR (E1/2 = 0.77 V) in a 0.1 M KOH solution and the OER (η = 330 mV at 50 mA cm-2) in a 1 M KOH solution. The RZAB with a HEPBA/CNT-based air electrode demonstrated an open-circuit voltage of 1.39 V and provided a significant energy density of 71 mW cm-2. Moreover, the charge and discharge cycles lasting up to 40 h at a current density of 5 mA cm-2 demonstrate its excellent stability. This work provides an alternative avenue for the rational design of HEPBA's derivative for a sustainable rechargeable metal-air battery platform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信