Wuttichai Tanmathusorachai, Sofiannisa Aulia, Mia Rinawati, Ling-Yu Chang, Chia-Yu Chang, Wei-Hsiang Huang, Ming-Hsien Lin, Wei-Nien Su, Brian Yuliarto, Min-Hsin Yeh
{"title":"高熵普鲁士蓝类似物衍生的异质结构纳米粒子作为可充电锌-空气电池的双功能氧转换电催化剂。","authors":"Wuttichai Tanmathusorachai, Sofiannisa Aulia, Mia Rinawati, Ling-Yu Chang, Chia-Yu Chang, Wei-Hsiang Huang, Ming-Hsien Lin, Wei-Nien Su, Brian Yuliarto, Min-Hsin Yeh","doi":"10.1021/acsami.4c13387","DOIUrl":null,"url":null,"abstract":"<p><p>In response to energy challenges, rechargeable zinc-air batteries (RZABs) serve as an ideal platform for energy storage with a high energy density and safety. Nevertheless, addressing the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in RZAB requires highly active and robust electrocatalysts. High-entropy Prussian blue analogues (HEPBAs), formed by mixing diverse metals within a single lattice, exhibit enhanced stability due to their increased mixing entropy, which lowers the Gibbs free energy. HEPBAs innately enable sacrificial templating, an effective way to synthesize complex structures. Impressively, in this study, we successfully transform HEPBAs into exquisite multiphase (multimetallic alloy, metal carbide, and metal oxide) heterostructure nanoparticles through a controlled synthesis process. The elusive multiphase heterostructure nanoparticles manifested two active sites for selective ORR and OER. By integrating CNT into HEPBA-derived nanoparticles (HEPBA/CNT-800), the HEPBA/CNT-800 demonstrates superior activity toward both ORR (<i>E</i><sub>1/2</sub> = 0.77 V) in a 0.1 M KOH solution and the OER (η = 330 mV at 50 mA cm<sup>-2</sup>) in a 1 M KOH solution. The RZAB with a HEPBA/CNT-based air electrode demonstrated an open-circuit voltage of 1.39 V and provided a significant energy density of 71 mW cm<sup>-2</sup>. Moreover, the charge and discharge cycles lasting up to 40 h at a current density of 5 mA cm<sup>-2</sup> demonstrate its excellent stability. This work provides an alternative avenue for the rational design of HEPBA's derivative for a sustainable rechargeable metal-air battery platform.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Entropy Prussian Blue Analogue Derived Heterostructure Nanoparticles as Bifunctional Oxygen Conversion Electrocatalysts for the Rechargeable Zinc-Air Battery.\",\"authors\":\"Wuttichai Tanmathusorachai, Sofiannisa Aulia, Mia Rinawati, Ling-Yu Chang, Chia-Yu Chang, Wei-Hsiang Huang, Ming-Hsien Lin, Wei-Nien Su, Brian Yuliarto, Min-Hsin Yeh\",\"doi\":\"10.1021/acsami.4c13387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to energy challenges, rechargeable zinc-air batteries (RZABs) serve as an ideal platform for energy storage with a high energy density and safety. Nevertheless, addressing the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in RZAB requires highly active and robust electrocatalysts. High-entropy Prussian blue analogues (HEPBAs), formed by mixing diverse metals within a single lattice, exhibit enhanced stability due to their increased mixing entropy, which lowers the Gibbs free energy. HEPBAs innately enable sacrificial templating, an effective way to synthesize complex structures. Impressively, in this study, we successfully transform HEPBAs into exquisite multiphase (multimetallic alloy, metal carbide, and metal oxide) heterostructure nanoparticles through a controlled synthesis process. The elusive multiphase heterostructure nanoparticles manifested two active sites for selective ORR and OER. By integrating CNT into HEPBA-derived nanoparticles (HEPBA/CNT-800), the HEPBA/CNT-800 demonstrates superior activity toward both ORR (<i>E</i><sub>1/2</sub> = 0.77 V) in a 0.1 M KOH solution and the OER (η = 330 mV at 50 mA cm<sup>-2</sup>) in a 1 M KOH solution. The RZAB with a HEPBA/CNT-based air electrode demonstrated an open-circuit voltage of 1.39 V and provided a significant energy density of 71 mW cm<sup>-2</sup>. Moreover, the charge and discharge cycles lasting up to 40 h at a current density of 5 mA cm<sup>-2</sup> demonstrate its excellent stability. This work provides an alternative avenue for the rational design of HEPBA's derivative for a sustainable rechargeable metal-air battery platform.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c13387\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13387","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High-Entropy Prussian Blue Analogue Derived Heterostructure Nanoparticles as Bifunctional Oxygen Conversion Electrocatalysts for the Rechargeable Zinc-Air Battery.
In response to energy challenges, rechargeable zinc-air batteries (RZABs) serve as an ideal platform for energy storage with a high energy density and safety. Nevertheless, addressing the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in RZAB requires highly active and robust electrocatalysts. High-entropy Prussian blue analogues (HEPBAs), formed by mixing diverse metals within a single lattice, exhibit enhanced stability due to their increased mixing entropy, which lowers the Gibbs free energy. HEPBAs innately enable sacrificial templating, an effective way to synthesize complex structures. Impressively, in this study, we successfully transform HEPBAs into exquisite multiphase (multimetallic alloy, metal carbide, and metal oxide) heterostructure nanoparticles through a controlled synthesis process. The elusive multiphase heterostructure nanoparticles manifested two active sites for selective ORR and OER. By integrating CNT into HEPBA-derived nanoparticles (HEPBA/CNT-800), the HEPBA/CNT-800 demonstrates superior activity toward both ORR (E1/2 = 0.77 V) in a 0.1 M KOH solution and the OER (η = 330 mV at 50 mA cm-2) in a 1 M KOH solution. The RZAB with a HEPBA/CNT-based air electrode demonstrated an open-circuit voltage of 1.39 V and provided a significant energy density of 71 mW cm-2. Moreover, the charge and discharge cycles lasting up to 40 h at a current density of 5 mA cm-2 demonstrate its excellent stability. This work provides an alternative avenue for the rational design of HEPBA's derivative for a sustainable rechargeable metal-air battery platform.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.