Marnix P Abrahams, Jorge Martinez, Peter G Steeneken, Gerard J Verbiest
{"title":"石墨烯挤压薄膜麦克风","authors":"Marnix P Abrahams, Jorge Martinez, Peter G Steeneken, Gerard J Verbiest","doi":"10.1021/acs.nanolett.4c02803","DOIUrl":null,"url":null,"abstract":"<p><p>Most microphones detect sound-pressure-induced motion of a membrane. In contrast, we introduce a microphone that operates by monitoring sound-pressure-induced modulation of the air compressibility. By driving a graphene membrane at resonance, the gas, that is trapped in a squeeze-film beneath it, is compressed at high frequency. Since the gas-film stiffness depends on the air pressure, the resonance frequency of the graphene is modulated by variations in sound pressure. We demonstrate that this squeeze-film microphone principle can be used to detect sound and music by tracking the membrane's resonance frequency using a phase-locked loop. The squeeze-film microphone potentially offers advantages like increased dynamic range, lower susceptibility to pressure-induced failure and vibration-induced noise over conventional devices. Moreover, microphones might become much smaller, as demonstrated in this work with one that operates using a circular graphene membrane with an area that is more than 1000 times smaller than that of MEMS microphones.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Graphene Squeeze-Film Microphone.\",\"authors\":\"Marnix P Abrahams, Jorge Martinez, Peter G Steeneken, Gerard J Verbiest\",\"doi\":\"10.1021/acs.nanolett.4c02803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most microphones detect sound-pressure-induced motion of a membrane. In contrast, we introduce a microphone that operates by monitoring sound-pressure-induced modulation of the air compressibility. By driving a graphene membrane at resonance, the gas, that is trapped in a squeeze-film beneath it, is compressed at high frequency. Since the gas-film stiffness depends on the air pressure, the resonance frequency of the graphene is modulated by variations in sound pressure. We demonstrate that this squeeze-film microphone principle can be used to detect sound and music by tracking the membrane's resonance frequency using a phase-locked loop. The squeeze-film microphone potentially offers advantages like increased dynamic range, lower susceptibility to pressure-induced failure and vibration-induced noise over conventional devices. Moreover, microphones might become much smaller, as demonstrated in this work with one that operates using a circular graphene membrane with an area that is more than 1000 times smaller than that of MEMS microphones.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02803\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02803","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Most microphones detect sound-pressure-induced motion of a membrane. In contrast, we introduce a microphone that operates by monitoring sound-pressure-induced modulation of the air compressibility. By driving a graphene membrane at resonance, the gas, that is trapped in a squeeze-film beneath it, is compressed at high frequency. Since the gas-film stiffness depends on the air pressure, the resonance frequency of the graphene is modulated by variations in sound pressure. We demonstrate that this squeeze-film microphone principle can be used to detect sound and music by tracking the membrane's resonance frequency using a phase-locked loop. The squeeze-film microphone potentially offers advantages like increased dynamic range, lower susceptibility to pressure-induced failure and vibration-induced noise over conventional devices. Moreover, microphones might become much smaller, as demonstrated in this work with one that operates using a circular graphene membrane with an area that is more than 1000 times smaller than that of MEMS microphones.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.