Kai Di, Dawei Yang, Linan Su, Ronghuan Du, Shengbin Dong, Baomin Wang, Jingping Qu
{"title":"以苯并咪唑分子为特征的硫醇桥接双金属复合物新家族:合成、结构和氧化还原反应性。","authors":"Kai Di, Dawei Yang, Linan Su, Ronghuan Du, Shengbin Dong, Baomin Wang, Jingping Qu","doi":"10.1039/d4dt02484b","DOIUrl":null,"url":null,"abstract":"<p><p>Thiolate-bridged bimetallic complexes have attracted considerable attention owing to their extensive applications in bioinspired catalysis as biological metalloenzymes. Compared with bimetallic complexes supported by common thiolate ligands, those featuring functional groups that may adopt different patterns to coordinate to the metal centers are usually difficult to access, limiting their exploration. The benzimidazole moiety is a multi-faceted functional group; for example, it can act as a biomolecule-responsive ligand for the development of transition metal complexes with anticancer and antitumor properties. However, so far, there has been no report on thiolate-bridged bimetallic complexes featuring a benzimidazole moiety as the functional group. In this work, we use half-sandwich type monometallic (iron, cobalt or ruthenium) complexes as precursors to synthesize a series of thiolate-bridged bimetallic complexes <i>via</i> reactions with benzimidazolylmethyl disulfide (bzmds) and benzimidazol-2-ylmethanethiol (bzmt). X-ray crystallographic analyses show that diiron and dicobalt complexes feature two bzmt ligands in a <i>syn</i> configuration, which are bridged to the two M<sup>III</sup> centers through the sulfur and nitrogen atoms. In contrast, the diruthenium complex possesses <i>syn</i>- and <i>anti</i>-configuration isomers in both solution- and solid-state, and the corresponding ratio of the two isomers varies upon employing different solvents. Electrochemical studies reveal that these complexes possess two or more redox couples. In particular, an Fe<sup>III</sup>Fe<sup>III</sup> complex can undergo one-electron reduction to give an isolable Fe<sup>II</sup>Fe<sup>III</sup> species. In addition, we investigated their electronic structures by UV/vis spectroscopy and density functional theory (DFT).</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new family of thiolate-bridged bimetallic complexes featuring a benzimidazole moiety: synthesis, structure and redox reactivity.\",\"authors\":\"Kai Di, Dawei Yang, Linan Su, Ronghuan Du, Shengbin Dong, Baomin Wang, Jingping Qu\",\"doi\":\"10.1039/d4dt02484b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thiolate-bridged bimetallic complexes have attracted considerable attention owing to their extensive applications in bioinspired catalysis as biological metalloenzymes. Compared with bimetallic complexes supported by common thiolate ligands, those featuring functional groups that may adopt different patterns to coordinate to the metal centers are usually difficult to access, limiting their exploration. The benzimidazole moiety is a multi-faceted functional group; for example, it can act as a biomolecule-responsive ligand for the development of transition metal complexes with anticancer and antitumor properties. However, so far, there has been no report on thiolate-bridged bimetallic complexes featuring a benzimidazole moiety as the functional group. In this work, we use half-sandwich type monometallic (iron, cobalt or ruthenium) complexes as precursors to synthesize a series of thiolate-bridged bimetallic complexes <i>via</i> reactions with benzimidazolylmethyl disulfide (bzmds) and benzimidazol-2-ylmethanethiol (bzmt). X-ray crystallographic analyses show that diiron and dicobalt complexes feature two bzmt ligands in a <i>syn</i> configuration, which are bridged to the two M<sup>III</sup> centers through the sulfur and nitrogen atoms. In contrast, the diruthenium complex possesses <i>syn</i>- and <i>anti</i>-configuration isomers in both solution- and solid-state, and the corresponding ratio of the two isomers varies upon employing different solvents. Electrochemical studies reveal that these complexes possess two or more redox couples. In particular, an Fe<sup>III</sup>Fe<sup>III</sup> complex can undergo one-electron reduction to give an isolable Fe<sup>II</sup>Fe<sup>III</sup> species. In addition, we investigated their electronic structures by UV/vis spectroscopy and density functional theory (DFT).</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4dt02484b\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt02484b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A new family of thiolate-bridged bimetallic complexes featuring a benzimidazole moiety: synthesis, structure and redox reactivity.
Thiolate-bridged bimetallic complexes have attracted considerable attention owing to their extensive applications in bioinspired catalysis as biological metalloenzymes. Compared with bimetallic complexes supported by common thiolate ligands, those featuring functional groups that may adopt different patterns to coordinate to the metal centers are usually difficult to access, limiting their exploration. The benzimidazole moiety is a multi-faceted functional group; for example, it can act as a biomolecule-responsive ligand for the development of transition metal complexes with anticancer and antitumor properties. However, so far, there has been no report on thiolate-bridged bimetallic complexes featuring a benzimidazole moiety as the functional group. In this work, we use half-sandwich type monometallic (iron, cobalt or ruthenium) complexes as precursors to synthesize a series of thiolate-bridged bimetallic complexes via reactions with benzimidazolylmethyl disulfide (bzmds) and benzimidazol-2-ylmethanethiol (bzmt). X-ray crystallographic analyses show that diiron and dicobalt complexes feature two bzmt ligands in a syn configuration, which are bridged to the two MIII centers through the sulfur and nitrogen atoms. In contrast, the diruthenium complex possesses syn- and anti-configuration isomers in both solution- and solid-state, and the corresponding ratio of the two isomers varies upon employing different solvents. Electrochemical studies reveal that these complexes possess two or more redox couples. In particular, an FeIIIFeIII complex can undergo one-electron reduction to give an isolable FeIIFeIII species. In addition, we investigated their electronic structures by UV/vis spectroscopy and density functional theory (DFT).