Anthony M. Miller , John T. Wilkinson , Gunnar M. Brown , Jerome Gan , Khachatur Manukyan , Yukun Jin , Graham F. Peaslee
{"title":"来自两个重离子反应的 43Sc、44mSc 和 44gSc 的截面。","authors":"Anthony M. Miller , John T. Wilkinson , Gunnar M. Brown , Jerome Gan , Khachatur Manukyan , Yukun Jin , Graham F. Peaslee","doi":"10.1016/j.apradiso.2024.111560","DOIUrl":null,"url":null,"abstract":"<div><div>Two different heavy ion reactions were used to produce <sup>43</sup>Sc (t<span><math><msub><mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msub></math></span> = 3.891 h), <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>g</mi></mrow></msup></math></span>Sc (t<span><math><msub><mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msub></math></span> = 4.042 h), and <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>m</mi></mrow></msup></math></span>Sc (t<span><math><msub><mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msub></math></span> = 58.61 h) among other stable or long-lived chemically separable products. Production cross sections for <sup>19</sup>F + <sup>27</sup>Al and the reverse kinematic reaction <sup>35</sup>Cl + <span><math><msup><mrow></mrow><mrow><mi>n</mi><mi>a</mi><mi>t</mi></mrow></msup></math></span>B were measured using an MC-SNICS ion source and the Notre Dame FN Tandem Accelerator. <sup>19</sup>F beams from 35 to 60 MeV were produced with beam currents between 40–80 pnA and <sup>35</sup>Cl beams were produced at six entrance energies with comparable beam currents. This work reports nuclear reaction cross sections <sup>27</sup>Al (<sup>19</sup>F, x) <sup>43</sup>Sc, <sup>27</sup>Al (<sup>19</sup>F, pn) <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>g</mi></mrow></msup></math></span>Sc, and <sup>27</sup>Al (<sup>19</sup>F, pn) <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>m</mi></mrow></msup></math></span>Sc at six energies between 35 and 60 MeV lab energy. Cross sections within the same energy range were measured for <sup>27</sup>Al (<sup>19</sup>F, 3pn) <sup>42</sup>K and <sup>27</sup>Al (<sup>19</sup>F, 3p) <sup>43</sup>K. Comparative measurements were performed for the same compound nucleus produced from <span><math><msup><mrow></mrow><mrow><mi>n</mi><mi>a</mi><mi>t</mi></mrow></msup></math></span>B(<sup>35</sup>Cl, x) <sup>43</sup>Sc, <span><math><msup><mrow></mrow><mrow><mi>n</mi><mi>a</mi><mi>t</mi></mrow></msup></math></span>B(<sup>35</sup>Cl, pn) <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>g</mi></mrow></msup></math></span>Sc, and <span><math><msup><mrow></mrow><mrow><mi>n</mi><mi>a</mi><mi>t</mi></mrow></msup></math></span>B(<sup>35</sup>Cl, pn) <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>m</mi></mrow></msup></math></span>Sc. The measured thin target cross sections show an overestimation by several statistical models for the scandium radioisotopes. This is corroborated by the measured thick target production rates for both entrance channels. This may be due to angular momentum effects of a heavy ion entrance channel compared to light-ion production, but additional work is required to understand this discrepancy. These measurements demonstrate that the medically useful <sup>43</sup>Sc, <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>g</mi></mrow></msup></math></span>Sc, and <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>m</mi></mrow></msup></math></span>Sc radioisotopes can be free of the long-lived contaminant <sup>46</sup>Sc without the use of enriched targets, using heavy ion beams and robust target materials.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"215 ","pages":"Article 111560"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-sections for 43Sc, 44mSc, and 44gSc from two heavy ion reactions\",\"authors\":\"Anthony M. Miller , John T. Wilkinson , Gunnar M. Brown , Jerome Gan , Khachatur Manukyan , Yukun Jin , Graham F. Peaslee\",\"doi\":\"10.1016/j.apradiso.2024.111560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two different heavy ion reactions were used to produce <sup>43</sup>Sc (t<span><math><msub><mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msub></math></span> = 3.891 h), <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>g</mi></mrow></msup></math></span>Sc (t<span><math><msub><mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msub></math></span> = 4.042 h), and <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>m</mi></mrow></msup></math></span>Sc (t<span><math><msub><mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msub></math></span> = 58.61 h) among other stable or long-lived chemically separable products. Production cross sections for <sup>19</sup>F + <sup>27</sup>Al and the reverse kinematic reaction <sup>35</sup>Cl + <span><math><msup><mrow></mrow><mrow><mi>n</mi><mi>a</mi><mi>t</mi></mrow></msup></math></span>B were measured using an MC-SNICS ion source and the Notre Dame FN Tandem Accelerator. <sup>19</sup>F beams from 35 to 60 MeV were produced with beam currents between 40–80 pnA and <sup>35</sup>Cl beams were produced at six entrance energies with comparable beam currents. This work reports nuclear reaction cross sections <sup>27</sup>Al (<sup>19</sup>F, x) <sup>43</sup>Sc, <sup>27</sup>Al (<sup>19</sup>F, pn) <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>g</mi></mrow></msup></math></span>Sc, and <sup>27</sup>Al (<sup>19</sup>F, pn) <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>m</mi></mrow></msup></math></span>Sc at six energies between 35 and 60 MeV lab energy. Cross sections within the same energy range were measured for <sup>27</sup>Al (<sup>19</sup>F, 3pn) <sup>42</sup>K and <sup>27</sup>Al (<sup>19</sup>F, 3p) <sup>43</sup>K. Comparative measurements were performed for the same compound nucleus produced from <span><math><msup><mrow></mrow><mrow><mi>n</mi><mi>a</mi><mi>t</mi></mrow></msup></math></span>B(<sup>35</sup>Cl, x) <sup>43</sup>Sc, <span><math><msup><mrow></mrow><mrow><mi>n</mi><mi>a</mi><mi>t</mi></mrow></msup></math></span>B(<sup>35</sup>Cl, pn) <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>g</mi></mrow></msup></math></span>Sc, and <span><math><msup><mrow></mrow><mrow><mi>n</mi><mi>a</mi><mi>t</mi></mrow></msup></math></span>B(<sup>35</sup>Cl, pn) <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>m</mi></mrow></msup></math></span>Sc. The measured thin target cross sections show an overestimation by several statistical models for the scandium radioisotopes. This is corroborated by the measured thick target production rates for both entrance channels. This may be due to angular momentum effects of a heavy ion entrance channel compared to light-ion production, but additional work is required to understand this discrepancy. These measurements demonstrate that the medically useful <sup>43</sup>Sc, <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>g</mi></mrow></msup></math></span>Sc, and <span><math><msup><mrow></mrow><mrow><mn>44</mn><mi>m</mi></mrow></msup></math></span>Sc radioisotopes can be free of the long-lived contaminant <sup>46</sup>Sc without the use of enriched targets, using heavy ion beams and robust target materials.</div></div>\",\"PeriodicalId\":8096,\"journal\":{\"name\":\"Applied Radiation and Isotopes\",\"volume\":\"215 \",\"pages\":\"Article 111560\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Radiation and Isotopes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969804324003889\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804324003889","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Cross-sections for 43Sc, 44mSc, and 44gSc from two heavy ion reactions
Two different heavy ion reactions were used to produce 43Sc (t = 3.891 h), Sc (t = 4.042 h), and Sc (t = 58.61 h) among other stable or long-lived chemically separable products. Production cross sections for 19F + 27Al and the reverse kinematic reaction 35Cl + B were measured using an MC-SNICS ion source and the Notre Dame FN Tandem Accelerator. 19F beams from 35 to 60 MeV were produced with beam currents between 40–80 pnA and 35Cl beams were produced at six entrance energies with comparable beam currents. This work reports nuclear reaction cross sections 27Al (19F, x) 43Sc, 27Al (19F, pn) Sc, and 27Al (19F, pn) Sc at six energies between 35 and 60 MeV lab energy. Cross sections within the same energy range were measured for 27Al (19F, 3pn) 42K and 27Al (19F, 3p) 43K. Comparative measurements were performed for the same compound nucleus produced from B(35Cl, x) 43Sc, B(35Cl, pn) Sc, and B(35Cl, pn) Sc. The measured thin target cross sections show an overestimation by several statistical models for the scandium radioisotopes. This is corroborated by the measured thick target production rates for both entrance channels. This may be due to angular momentum effects of a heavy ion entrance channel compared to light-ion production, but additional work is required to understand this discrepancy. These measurements demonstrate that the medically useful 43Sc, Sc, and Sc radioisotopes can be free of the long-lived contaminant 46Sc without the use of enriched targets, using heavy ion beams and robust target materials.
期刊介绍:
Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria.
Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.