用于高性能紫外-可见-红外宽带光电探测器的巨型胶体量子点/α-Ga2O3 异质结。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-24 Epub Date: 2024-11-04 DOI:10.1021/acsnano.4c10960
Donggyu Lee, Seoryeon Jeong, Sanghyun Moon, Minjung Yang, Sol-Hee Kim, Dongeon Kim, Seo-Young Lee, In-Suh Lee, Dae-Woo Jeon, Ji-Hyeon Park, Jihyun Kim, Se-Woong Baek
{"title":"用于高性能紫外-可见-红外宽带光电探测器的巨型胶体量子点/α-Ga2O3 异质结。","authors":"Donggyu Lee, Seoryeon Jeong, Sanghyun Moon, Minjung Yang, Sol-Hee Kim, Dongeon Kim, Seo-Young Lee, In-Suh Lee, Dae-Woo Jeon, Ji-Hyeon Park, Jihyun Kim, Se-Woong Baek","doi":"10.1021/acsnano.4c10960","DOIUrl":null,"url":null,"abstract":"<p><p>Broadband optoelectronics, which extend from the UV to IR regions, are crucial for imaging, autonomous driving, and object recognition. In particular, photon detection efficiency relies significantly on semiconductor properties, such as absorption coefficients and electron-hole pair generation rate, which can be optimized by designing a suitable p-n junction. In this study, we devise giant PbS colloidal quantum dots (G-PbS CQDs) that exhibit high absorption coefficients and broadband absorption. To leverage these exceptional optical properties, we combine G-PbS CQDs with an ultrawide-bandgap semiconductor, α-Ga<sub>2</sub>O<sub>3</sub>, and create an efficient G-PbS CQD/α-Ga<sub>2</sub>O<sub>3</sub> heterojunction photodetector that exhibits high performance across the UVC-vis-NIR spectrum range. The resultant heterojunction facilitates efficient electron-hole pair separation at the G-PbS CQD/α-Ga<sub>2</sub>O<sub>3</sub> heterojunction. Furthermore, we utilize transparent graphene electrodes to overcome the limitations of conventional transistor-type device structures and the substantial optical losses induced by opaque metal electrodes. This strategy maximizes the light-collection area and results in an approximately 3-orders of magnitude higher responsivity (55.5 A/W) and specific detectivity (1.66 × 10<sup>13</sup> Jones) compared to devices with opaque metal electrodes.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"34741-34749"},"PeriodicalIF":15.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Giant Colloidal Quantum Dot/α-Ga<sub>2</sub>O<sub>3</sub> Heterojunction for High Performance UV-Vis-IR Broadband Photodetector.\",\"authors\":\"Donggyu Lee, Seoryeon Jeong, Sanghyun Moon, Minjung Yang, Sol-Hee Kim, Dongeon Kim, Seo-Young Lee, In-Suh Lee, Dae-Woo Jeon, Ji-Hyeon Park, Jihyun Kim, Se-Woong Baek\",\"doi\":\"10.1021/acsnano.4c10960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Broadband optoelectronics, which extend from the UV to IR regions, are crucial for imaging, autonomous driving, and object recognition. In particular, photon detection efficiency relies significantly on semiconductor properties, such as absorption coefficients and electron-hole pair generation rate, which can be optimized by designing a suitable p-n junction. In this study, we devise giant PbS colloidal quantum dots (G-PbS CQDs) that exhibit high absorption coefficients and broadband absorption. To leverage these exceptional optical properties, we combine G-PbS CQDs with an ultrawide-bandgap semiconductor, α-Ga<sub>2</sub>O<sub>3</sub>, and create an efficient G-PbS CQD/α-Ga<sub>2</sub>O<sub>3</sub> heterojunction photodetector that exhibits high performance across the UVC-vis-NIR spectrum range. The resultant heterojunction facilitates efficient electron-hole pair separation at the G-PbS CQD/α-Ga<sub>2</sub>O<sub>3</sub> heterojunction. Furthermore, we utilize transparent graphene electrodes to overcome the limitations of conventional transistor-type device structures and the substantial optical losses induced by opaque metal electrodes. This strategy maximizes the light-collection area and results in an approximately 3-orders of magnitude higher responsivity (55.5 A/W) and specific detectivity (1.66 × 10<sup>13</sup> Jones) compared to devices with opaque metal electrodes.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\" \",\"pages\":\"34741-34749\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c10960\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c10960","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从紫外到红外的宽带光电子技术对于成像、自动驾驶和物体识别至关重要。特别是,光子探测效率在很大程度上取决于半导体特性,如吸收系数和电子-空穴对生成率,而这些特性可以通过设计合适的 p-n 结来优化。在这项研究中,我们设计了巨型 PbS 胶体量子点(G-PbS CQDs),它具有高吸收系数和宽带吸收特性。为了充分利用这些优异的光学特性,我们将 G-PbS CQDs 与超宽带隙半导体 α-Ga2O3 结合在一起,创造出一种高效的 G-PbS CQD/α-Ga2O3 异质结光电探测器,在紫外-可见-近红外光谱范围内均表现出高性能。由此产生的异质结有利于在 G-PbS CQD/α-Ga2O3 异质结上实现高效的电子-空穴对分离。此外,我们还利用透明石墨烯电极克服了传统晶体管型器件结构的局限性,以及不透明金属电极引起的大量光学损耗。与采用不透明金属电极的器件相比,这种策略最大限度地扩大了光收集面积,使响应率(55.5 A/W)和比检测率(1.66 × 1013 Jones)提高了约 3 个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Giant Colloidal Quantum Dot/α-Ga<sub>2</sub>O<sub>3</sub> Heterojunction for High Performance UV-Vis-IR Broadband Photodetector.

Giant Colloidal Quantum Dot/α-Ga2O3 Heterojunction for High Performance UV-Vis-IR Broadband Photodetector.

Broadband optoelectronics, which extend from the UV to IR regions, are crucial for imaging, autonomous driving, and object recognition. In particular, photon detection efficiency relies significantly on semiconductor properties, such as absorption coefficients and electron-hole pair generation rate, which can be optimized by designing a suitable p-n junction. In this study, we devise giant PbS colloidal quantum dots (G-PbS CQDs) that exhibit high absorption coefficients and broadband absorption. To leverage these exceptional optical properties, we combine G-PbS CQDs with an ultrawide-bandgap semiconductor, α-Ga2O3, and create an efficient G-PbS CQD/α-Ga2O3 heterojunction photodetector that exhibits high performance across the UVC-vis-NIR spectrum range. The resultant heterojunction facilitates efficient electron-hole pair separation at the G-PbS CQD/α-Ga2O3 heterojunction. Furthermore, we utilize transparent graphene electrodes to overcome the limitations of conventional transistor-type device structures and the substantial optical losses induced by opaque metal electrodes. This strategy maximizes the light-collection area and results in an approximately 3-orders of magnitude higher responsivity (55.5 A/W) and specific detectivity (1.66 × 1013 Jones) compared to devices with opaque metal electrodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信