希腊弧地区大地震情景的动态破裂模型,以实现基于物理的地震和海啸危害评估

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Sara Aniko Wirp, Alice-Agnes Gabriel, Thomas Ulrich, Stefano Lorito
{"title":"希腊弧地区大地震情景的动态破裂模型,以实现基于物理的地震和海啸危害评估","authors":"Sara Aniko Wirp,&nbsp;Alice-Agnes Gabriel,&nbsp;Thomas Ulrich,&nbsp;Stefano Lorito","doi":"10.1029/2024JB029320","DOIUrl":null,"url":null,"abstract":"<p>The Mediterranean Hellenic Arc subduction zone (HASZ) has generated several <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mi>W</mi>\n </msub>\n <mo>≥</mo>\n </mrow>\n <annotation> ${\\mathrm{M}}_{W}\\ge $</annotation>\n </semantics></math>8 earthquakes and tsunamis. Seismic-probabilistic tsunami hazard assessment typically utilizes uniform or stochastic earthquake models, which may not represent dynamic rupture and tsunami generation complexity. We present an ensemble of ten 3D dynamic rupture earthquake scenarios for the HASZ, utilizing a realistic slab geometry. Our simplest models use uniform along-arc pre-stresses or a single circular initial stress asperity. We then introduce progressively more complex models varying initial shear stress along-arc, multiple asperities based on scale-dependent critical slip weakening distance, and a most complex model blending all aforementioned heterogeneities. Thereby, regional initial conditions are constrained without relying on detailed geodetic locking models. Varying epicentral locations in the simplest, homogeneous model leads to different rupture speeds and moment magnitudes. We observe dynamic fault slip penetrating the shallow slip-strengthening region and affecting seafloor uplift. Off-fault plastic deformation can double vertical seafloor uplift. A single-asperity model generates a <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mi>W</mi>\n </msub>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\mathrm{M}}_{W}\\sim $</annotation>\n </semantics></math>8 scenario resembling the 1303 Crete earthquake. Using along-strike varying initial stresses results in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mi>W</mi>\n </msub>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\mathrm{M}}_{W}\\sim $</annotation>\n </semantics></math>8.0–8.5 dynamic rupture scenarios with diverse slip rates and uplift patterns. The model with the most heterogeneous initial conditions yields a <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mi>W</mi>\n </msub>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\mathrm{M}}_{W}\\sim $</annotation>\n </semantics></math>7.5 scenario. Dynamic rupture complexity in prestress and fracture energy tends to lower earthquake magnitude but enhances tsunamigenic displacements. Our results offer insights into the dynamics of potential large Hellenic Arc megathrust earthquakes and may inform future physics-based joint seismic and tsunami hazard assessments.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029320","citationCount":"0","resultStr":"{\"title\":\"Dynamic Rupture Modeling of Large Earthquake Scenarios at the Hellenic Arc Toward Physics-Based Seismic and Tsunami Hazard Assessment\",\"authors\":\"Sara Aniko Wirp,&nbsp;Alice-Agnes Gabriel,&nbsp;Thomas Ulrich,&nbsp;Stefano Lorito\",\"doi\":\"10.1029/2024JB029320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Mediterranean Hellenic Arc subduction zone (HASZ) has generated several <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>M</mi>\\n <mi>W</mi>\\n </msub>\\n <mo>≥</mo>\\n </mrow>\\n <annotation> ${\\\\mathrm{M}}_{W}\\\\ge $</annotation>\\n </semantics></math>8 earthquakes and tsunamis. Seismic-probabilistic tsunami hazard assessment typically utilizes uniform or stochastic earthquake models, which may not represent dynamic rupture and tsunami generation complexity. We present an ensemble of ten 3D dynamic rupture earthquake scenarios for the HASZ, utilizing a realistic slab geometry. Our simplest models use uniform along-arc pre-stresses or a single circular initial stress asperity. We then introduce progressively more complex models varying initial shear stress along-arc, multiple asperities based on scale-dependent critical slip weakening distance, and a most complex model blending all aforementioned heterogeneities. Thereby, regional initial conditions are constrained without relying on detailed geodetic locking models. Varying epicentral locations in the simplest, homogeneous model leads to different rupture speeds and moment magnitudes. We observe dynamic fault slip penetrating the shallow slip-strengthening region and affecting seafloor uplift. Off-fault plastic deformation can double vertical seafloor uplift. A single-asperity model generates a <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>M</mi>\\n <mi>W</mi>\\n </msub>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\mathrm{M}}_{W}\\\\sim $</annotation>\\n </semantics></math>8 scenario resembling the 1303 Crete earthquake. Using along-strike varying initial stresses results in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>M</mi>\\n <mi>W</mi>\\n </msub>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\mathrm{M}}_{W}\\\\sim $</annotation>\\n </semantics></math>8.0–8.5 dynamic rupture scenarios with diverse slip rates and uplift patterns. The model with the most heterogeneous initial conditions yields a <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>M</mi>\\n <mi>W</mi>\\n </msub>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\mathrm{M}}_{W}\\\\sim $</annotation>\\n </semantics></math>7.5 scenario. Dynamic rupture complexity in prestress and fracture energy tends to lower earthquake magnitude but enhances tsunamigenic displacements. Our results offer insights into the dynamics of potential large Hellenic Arc megathrust earthquakes and may inform future physics-based joint seismic and tsunami hazard assessments.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"129 11\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029320\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029320\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029320","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

地中海希腊弧俯冲带(HASZ)曾发生过数次 MW≥$\{mathrm{M}}_{W}ge $8 的地震和海啸。地震-海啸概率评估通常使用均匀或随机地震模型,这些模型可能无法代表动态破裂和海啸产生的复杂性。我们利用逼真的板块几何形状,为哈苏区提出了十种三维动态破裂地震情景组合。最简单的模型采用均匀的沿弧预应力或单一的圆形初始应力斜面。然后,我们逐步引入了更复杂的模型,这些模型包括沿弧线变化的初始剪应力、基于规模依赖性临界滑动削弱距离的多个表面,以及混合了上述所有异质性的最复杂模型。因此,无需依赖详细的大地锁定模型,即可对区域初始条件进行约束。在最简单的同质模型中,不同的震中位置会导致不同的断裂速度和力矩大小。我们观察到动态断层滑动穿透浅层滑动加强区,并影响海底隆起。断层外塑性变形可使海底垂直隆起加倍。单坍落度模型产生了一个类似于1303年克里特岛地震的MW∼$\{mathrm{M}}_{W}\sim $8 场景。使用沿走向变化的初始应力会产生MW∼${mathrm{M}}_{W}\sim $8.0-8.5的动态破裂情景,具有不同的滑动速率和隆升模式。初始条件最不均匀的模型产生了 MW∼$\{mathrm{M}}_{W}\sim $7.5 的情景。预应力和断裂能的动态断裂复杂性往往会降低震级,但会增强海啸位移。我们的研究结果提供了对潜在希腊弧形大地壳地震动力学的见解,并可为未来基于物理学的地震和海啸灾害联合评估提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic Rupture Modeling of Large Earthquake Scenarios at the Hellenic Arc Toward Physics-Based Seismic and Tsunami Hazard Assessment

Dynamic Rupture Modeling of Large Earthquake Scenarios at the Hellenic Arc Toward Physics-Based Seismic and Tsunami Hazard Assessment

The Mediterranean Hellenic Arc subduction zone (HASZ) has generated several M W ${\mathrm{M}}_{W}\ge $ 8 earthquakes and tsunamis. Seismic-probabilistic tsunami hazard assessment typically utilizes uniform or stochastic earthquake models, which may not represent dynamic rupture and tsunami generation complexity. We present an ensemble of ten 3D dynamic rupture earthquake scenarios for the HASZ, utilizing a realistic slab geometry. Our simplest models use uniform along-arc pre-stresses or a single circular initial stress asperity. We then introduce progressively more complex models varying initial shear stress along-arc, multiple asperities based on scale-dependent critical slip weakening distance, and a most complex model blending all aforementioned heterogeneities. Thereby, regional initial conditions are constrained without relying on detailed geodetic locking models. Varying epicentral locations in the simplest, homogeneous model leads to different rupture speeds and moment magnitudes. We observe dynamic fault slip penetrating the shallow slip-strengthening region and affecting seafloor uplift. Off-fault plastic deformation can double vertical seafloor uplift. A single-asperity model generates a M W ${\mathrm{M}}_{W}\sim $ 8 scenario resembling the 1303 Crete earthquake. Using along-strike varying initial stresses results in M W ${\mathrm{M}}_{W}\sim $ 8.0–8.5 dynamic rupture scenarios with diverse slip rates and uplift patterns. The model with the most heterogeneous initial conditions yields a M W ${\mathrm{M}}_{W}\sim $ 7.5 scenario. Dynamic rupture complexity in prestress and fracture energy tends to lower earthquake magnitude but enhances tsunamigenic displacements. Our results offer insights into the dynamics of potential large Hellenic Arc megathrust earthquakes and may inform future physics-based joint seismic and tsunami hazard assessments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research: Solid Earth Earth and Planetary Sciences-Geophysics
CiteScore
7.50
自引率
15.40%
发文量
559
期刊介绍: The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology. JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields. JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信