通过磁场驱动的自旋极化诱导快速电荷传输提高超级电容器性能

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiaobing Xu , Chensi Zhou , Yaqi Peng , Duanduan Liu , Lei Zhang , Shiming Yan , Xinglong Wu
{"title":"通过磁场驱动的自旋极化诱导快速电荷传输提高超级电容器性能","authors":"Xiaobing Xu ,&nbsp;Chensi Zhou ,&nbsp;Yaqi Peng ,&nbsp;Duanduan Liu ,&nbsp;Lei Zhang ,&nbsp;Shiming Yan ,&nbsp;Xinglong Wu","doi":"10.1016/j.apsusc.2024.161690","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic supercapacitors have garnered significant attention, with notable progress in recent years. However, the underlying mechanisms remain unclear and require further investigation for future energy storage applications. In this study, we designed and fabricated Mn-Fe<sub>2</sub>O<sub>3</sub>/reduced graphene oxide (Mn-Fe<sub>2</sub>O<sub>3</sub>/rGO) nanostructures by employing heteroatom doping and interface engineering. Theoretical calculations showed that incorporating Mn<sup>2+</sup> into Fe<sub>2</sub>O<sub>3</sub> modulates electron localization around Fe atoms, leading to spin polarization in Fe 3d orbital electrons. Our experiments demonstrated that the optimized Mn-Fe<sub>2</sub>O<sub>3</sub>/rGO nanostructure processes ferromagnetic properties with a negative magnetoresistance effect at room temperature, suggesting that substantial spin-polarized charges rapidly participate in surface charge–discharge reactions under an applied magnetic field. This phenomenon resulted in a remarkable specific capacitance of 2956.4 F g<sup>−1</sup> at 1 A g<sup>−1</sup>, along with superior cyclic stability. Additionally, the asymmetric supercapacitor device achieved an energy density of 220.19 W h kg<sup>−1</sup> at a power density of 3.93 kW kg<sup>−1</sup>, with excellent capacitance retention of 98.5 % after 5000 cycles. This work paves the way for improving the performance of magnetic supercapacitors based on metal oxide electrode materials.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"682 ","pages":"Article 161690"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing supercapacitor performance through rapid charge transport induced by magnetic field-driven spin polarization\",\"authors\":\"Xiaobing Xu ,&nbsp;Chensi Zhou ,&nbsp;Yaqi Peng ,&nbsp;Duanduan Liu ,&nbsp;Lei Zhang ,&nbsp;Shiming Yan ,&nbsp;Xinglong Wu\",\"doi\":\"10.1016/j.apsusc.2024.161690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnetic supercapacitors have garnered significant attention, with notable progress in recent years. However, the underlying mechanisms remain unclear and require further investigation for future energy storage applications. In this study, we designed and fabricated Mn-Fe<sub>2</sub>O<sub>3</sub>/reduced graphene oxide (Mn-Fe<sub>2</sub>O<sub>3</sub>/rGO) nanostructures by employing heteroatom doping and interface engineering. Theoretical calculations showed that incorporating Mn<sup>2+</sup> into Fe<sub>2</sub>O<sub>3</sub> modulates electron localization around Fe atoms, leading to spin polarization in Fe 3d orbital electrons. Our experiments demonstrated that the optimized Mn-Fe<sub>2</sub>O<sub>3</sub>/rGO nanostructure processes ferromagnetic properties with a negative magnetoresistance effect at room temperature, suggesting that substantial spin-polarized charges rapidly participate in surface charge–discharge reactions under an applied magnetic field. This phenomenon resulted in a remarkable specific capacitance of 2956.4 F g<sup>−1</sup> at 1 A g<sup>−1</sup>, along with superior cyclic stability. Additionally, the asymmetric supercapacitor device achieved an energy density of 220.19 W h kg<sup>−1</sup> at a power density of 3.93 kW kg<sup>−1</sup>, with excellent capacitance retention of 98.5 % after 5000 cycles. This work paves the way for improving the performance of magnetic supercapacitors based on metal oxide electrode materials.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"682 \",\"pages\":\"Article 161690\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433224024061\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433224024061","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

磁性超级电容器备受关注,近年来取得了显著进展。然而,其基本机理仍不清楚,需要进一步研究,以适应未来的储能应用。在本研究中,我们利用杂原子掺杂和界面工程设计并制造了锰-Fe2O3/还原氧化石墨烯(Mn-Fe2O3/rGO)纳米结构。理论计算表明,在 Fe2O3 中掺入 Mn2+ 会改变铁原子周围的电子定位,从而导致铁 3d 轨道电子的自旋极化。我们的实验表明,优化的 Mn-Fe2O3/rGO 纳米结构具有铁磁特性,在室温下具有负磁阻效应,这表明在外加磁场作用下,大量自旋极化电荷迅速参与了表面电荷放电反应。这种现象导致在 1 A g-1 的条件下,比电容高达 2956.4 F g-1,并具有卓越的循环稳定性。此外,在功率密度为 3.93 kW kg-1 时,不对称超级电容器装置的能量密度达到 220.19 W h kg-1,5000 次循环后电容保持率高达 98.5%。这项工作为提高基于金属氧化物电极材料的磁性超级电容器的性能铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing supercapacitor performance through rapid charge transport induced by magnetic field-driven spin polarization

Enhancing supercapacitor performance through rapid charge transport induced by magnetic field-driven spin polarization

Enhancing supercapacitor performance through rapid charge transport induced by magnetic field-driven spin polarization
Magnetic supercapacitors have garnered significant attention, with notable progress in recent years. However, the underlying mechanisms remain unclear and require further investigation for future energy storage applications. In this study, we designed and fabricated Mn-Fe2O3/reduced graphene oxide (Mn-Fe2O3/rGO) nanostructures by employing heteroatom doping and interface engineering. Theoretical calculations showed that incorporating Mn2+ into Fe2O3 modulates electron localization around Fe atoms, leading to spin polarization in Fe 3d orbital electrons. Our experiments demonstrated that the optimized Mn-Fe2O3/rGO nanostructure processes ferromagnetic properties with a negative magnetoresistance effect at room temperature, suggesting that substantial spin-polarized charges rapidly participate in surface charge–discharge reactions under an applied magnetic field. This phenomenon resulted in a remarkable specific capacitance of 2956.4 F g−1 at 1 A g−1, along with superior cyclic stability. Additionally, the asymmetric supercapacitor device achieved an energy density of 220.19 W h kg−1 at a power density of 3.93 kW kg−1, with excellent capacitance retention of 98.5 % after 5000 cycles. This work paves the way for improving the performance of magnetic supercapacitors based on metal oxide electrode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信