Vijay Srinivasan Murugesan , Michael Ruby Raj , Hock Beng Lee , Neetesh Kumar
{"title":"使用苯并二噻吩基无规共聚物空穴传输材料制造高效率 Perovskite 太阳能电池","authors":"Vijay Srinivasan Murugesan , Michael Ruby Raj , Hock Beng Lee , Neetesh Kumar","doi":"10.1016/j.electacta.2024.145315","DOIUrl":null,"url":null,"abstract":"<div><div>The design of donor-acceptor (D-A)-based random copolymers-type hole transporting materials (HTMs) are important for achieving superior performance of perovskite solar cells (PSCs) with high durability. In this work, a 2-alkylthienyl-substituted benzodithiophene (BDTT)-based random copolymer (denoted as <strong>RCP-BDTTPD</strong>), containing 2-ethylhexylthiophene-substituted benzo[1,2-b:4,5-b′]dithiophene (BDTT as an electron-donor; M1) and two different side-chain functionalized thieno[3,4-c]-pyrrole-4,6‑dione as the electron-acceptors (<strong>M2</strong> and <strong>M3</strong>), is prepared and applied as an efficient interfacial HTM for PSCs. The optical, electrochemical, and electronic properties of <strong>RCP-BDTTPD</strong> are shown to be structurally and energetically viable to serve as HTM for PSCs. The <strong>RCP-BDTTPD</strong> has deeper highest occupied molecular orbitals (HOMO; −5.53 eV) and lowest unoccupied molecular orbitals (LUMO; −3.57 eV) energy levels. This is shown to be energetically suitable for realizing better compatibility with Cs-containing formamidinium/methylammonium (FAMA) mixed-cation perovskite as light absorber having HOMO energy level (−5.85 eV). The <strong>RCP-BDTTPD</strong> possessing gradient band alignment with perovskite, which is shown to be highly significant for the extraction of charge carriers, resulting in higher hole mobility of PSCs. <strong>RCP-BDTTPD</strong> delivered a reasonably good V<sub>oc</sub> of 1.10 V and higher <em>J</em><sub>sc</sub> of 19.01 mAcm<sup>−2</sup> and, champion power conversion efficiency (PCE) up to 15.30 % with hole mobility (1.34×10<sup>−3</sup> cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup>) and high durability (Encapsulated cell retention of its PCE about 98 % over 16 h under harsh environment: Temp. ∼85 °C, RH∼85 %). This work demonstrating a potential application of <strong>RCP-BDTTPD</strong> based HTMs for the fabrication of high-performance PSCs with high durability as well as low cost.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"509 ","pages":"Article 145315"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of high-efficiency perovskite solar cells using benzodithiophene-based random copolymeric hole transport material\",\"authors\":\"Vijay Srinivasan Murugesan , Michael Ruby Raj , Hock Beng Lee , Neetesh Kumar\",\"doi\":\"10.1016/j.electacta.2024.145315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The design of donor-acceptor (D-A)-based random copolymers-type hole transporting materials (HTMs) are important for achieving superior performance of perovskite solar cells (PSCs) with high durability. In this work, a 2-alkylthienyl-substituted benzodithiophene (BDTT)-based random copolymer (denoted as <strong>RCP-BDTTPD</strong>), containing 2-ethylhexylthiophene-substituted benzo[1,2-b:4,5-b′]dithiophene (BDTT as an electron-donor; M1) and two different side-chain functionalized thieno[3,4-c]-pyrrole-4,6‑dione as the electron-acceptors (<strong>M2</strong> and <strong>M3</strong>), is prepared and applied as an efficient interfacial HTM for PSCs. The optical, electrochemical, and electronic properties of <strong>RCP-BDTTPD</strong> are shown to be structurally and energetically viable to serve as HTM for PSCs. The <strong>RCP-BDTTPD</strong> has deeper highest occupied molecular orbitals (HOMO; −5.53 eV) and lowest unoccupied molecular orbitals (LUMO; −3.57 eV) energy levels. This is shown to be energetically suitable for realizing better compatibility with Cs-containing formamidinium/methylammonium (FAMA) mixed-cation perovskite as light absorber having HOMO energy level (−5.85 eV). The <strong>RCP-BDTTPD</strong> possessing gradient band alignment with perovskite, which is shown to be highly significant for the extraction of charge carriers, resulting in higher hole mobility of PSCs. <strong>RCP-BDTTPD</strong> delivered a reasonably good V<sub>oc</sub> of 1.10 V and higher <em>J</em><sub>sc</sub> of 19.01 mAcm<sup>−2</sup> and, champion power conversion efficiency (PCE) up to 15.30 % with hole mobility (1.34×10<sup>−3</sup> cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup>) and high durability (Encapsulated cell retention of its PCE about 98 % over 16 h under harsh environment: Temp. ∼85 °C, RH∼85 %). This work demonstrating a potential application of <strong>RCP-BDTTPD</strong> based HTMs for the fabrication of high-performance PSCs with high durability as well as low cost.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"509 \",\"pages\":\"Article 145315\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468624015512\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015512","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Fabrication of high-efficiency perovskite solar cells using benzodithiophene-based random copolymeric hole transport material
The design of donor-acceptor (D-A)-based random copolymers-type hole transporting materials (HTMs) are important for achieving superior performance of perovskite solar cells (PSCs) with high durability. In this work, a 2-alkylthienyl-substituted benzodithiophene (BDTT)-based random copolymer (denoted as RCP-BDTTPD), containing 2-ethylhexylthiophene-substituted benzo[1,2-b:4,5-b′]dithiophene (BDTT as an electron-donor; M1) and two different side-chain functionalized thieno[3,4-c]-pyrrole-4,6‑dione as the electron-acceptors (M2 and M3), is prepared and applied as an efficient interfacial HTM for PSCs. The optical, electrochemical, and electronic properties of RCP-BDTTPD are shown to be structurally and energetically viable to serve as HTM for PSCs. The RCP-BDTTPD has deeper highest occupied molecular orbitals (HOMO; −5.53 eV) and lowest unoccupied molecular orbitals (LUMO; −3.57 eV) energy levels. This is shown to be energetically suitable for realizing better compatibility with Cs-containing formamidinium/methylammonium (FAMA) mixed-cation perovskite as light absorber having HOMO energy level (−5.85 eV). The RCP-BDTTPD possessing gradient band alignment with perovskite, which is shown to be highly significant for the extraction of charge carriers, resulting in higher hole mobility of PSCs. RCP-BDTTPD delivered a reasonably good Voc of 1.10 V and higher Jsc of 19.01 mAcm−2 and, champion power conversion efficiency (PCE) up to 15.30 % with hole mobility (1.34×10−3 cm2V−1s−1) and high durability (Encapsulated cell retention of its PCE about 98 % over 16 h under harsh environment: Temp. ∼85 °C, RH∼85 %). This work demonstrating a potential application of RCP-BDTTPD based HTMs for the fabrication of high-performance PSCs with high durability as well as low cost.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.