Z.Y. Xu, Y.Q. You, Q. Lu, C.J. Li, M. Song, J. Tan, L. Liu, X.F. Chen, J.H. Yi
{"title":"通过原位界面反应和异质结构设计打破镁基复合材料的性能权衡","authors":"Z.Y. Xu, Y.Q. You, Q. Lu, C.J. Li, M. Song, J. Tan, L. Liu, X.F. Chen, J.H. Yi","doi":"10.1016/j.jma.2024.10.008","DOIUrl":null,"url":null,"abstract":"Many properties of Mg matrix composites are mutually incompatible, and even completely repel each other. Here, we constructed a magnetic layered component in Mg matrix composite reinforced with reduced graphene oxide (RGO) through an in-situ interface reaction strategy, achieving simultaneous improvement in the strength, ductility, and electromagnetic shielding performance of the composite. The magnetic component is generated by the in-situ reaction of Fe<sub>2</sub>O<sub>3</sub> nanoparticles encapsulated on RGO with the Mg matrix. The superior strength-ductility synergy originates from layered heterostructure, which actives non-basal dislocations and enables a stable microcrack-multiplication. The heterogeneous layered structure strengthens the multi-level reflection of electromagnetic wave (EMW) inside the composite. The in-situ interfacial reaction introduces abundant of heterogeneous interfaces into the composites, which improves the interfacial polarization loss ability of the composites. The magnetic RGO layer can provide shape anisotropy that breaks the Snoek limit, thus improving the magnetic loss ability of composite in high-frequency electromagnetic fields. The synergistic action of multiple EMW loss mechanisms improves the electromagnetic shielding performance of composite. The current study emphasizes the influence of interface structure on the mechanical and functional properties of composites, and presents a promising approach for the development of structure/functional integrated composites with enhanced properties.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"145 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking Mg matrix composite property trade-offs via in-situ interface reaction and heterogeneous structure design\",\"authors\":\"Z.Y. Xu, Y.Q. You, Q. Lu, C.J. Li, M. Song, J. Tan, L. Liu, X.F. Chen, J.H. Yi\",\"doi\":\"10.1016/j.jma.2024.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many properties of Mg matrix composites are mutually incompatible, and even completely repel each other. Here, we constructed a magnetic layered component in Mg matrix composite reinforced with reduced graphene oxide (RGO) through an in-situ interface reaction strategy, achieving simultaneous improvement in the strength, ductility, and electromagnetic shielding performance of the composite. The magnetic component is generated by the in-situ reaction of Fe<sub>2</sub>O<sub>3</sub> nanoparticles encapsulated on RGO with the Mg matrix. The superior strength-ductility synergy originates from layered heterostructure, which actives non-basal dislocations and enables a stable microcrack-multiplication. The heterogeneous layered structure strengthens the multi-level reflection of electromagnetic wave (EMW) inside the composite. The in-situ interfacial reaction introduces abundant of heterogeneous interfaces into the composites, which improves the interfacial polarization loss ability of the composites. The magnetic RGO layer can provide shape anisotropy that breaks the Snoek limit, thus improving the magnetic loss ability of composite in high-frequency electromagnetic fields. The synergistic action of multiple EMW loss mechanisms improves the electromagnetic shielding performance of composite. The current study emphasizes the influence of interface structure on the mechanical and functional properties of composites, and presents a promising approach for the development of structure/functional integrated composites with enhanced properties.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2024.10.008\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.10.008","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Breaking Mg matrix composite property trade-offs via in-situ interface reaction and heterogeneous structure design
Many properties of Mg matrix composites are mutually incompatible, and even completely repel each other. Here, we constructed a magnetic layered component in Mg matrix composite reinforced with reduced graphene oxide (RGO) through an in-situ interface reaction strategy, achieving simultaneous improvement in the strength, ductility, and electromagnetic shielding performance of the composite. The magnetic component is generated by the in-situ reaction of Fe2O3 nanoparticles encapsulated on RGO with the Mg matrix. The superior strength-ductility synergy originates from layered heterostructure, which actives non-basal dislocations and enables a stable microcrack-multiplication. The heterogeneous layered structure strengthens the multi-level reflection of electromagnetic wave (EMW) inside the composite. The in-situ interfacial reaction introduces abundant of heterogeneous interfaces into the composites, which improves the interfacial polarization loss ability of the composites. The magnetic RGO layer can provide shape anisotropy that breaks the Snoek limit, thus improving the magnetic loss ability of composite in high-frequency electromagnetic fields. The synergistic action of multiple EMW loss mechanisms improves the electromagnetic shielding performance of composite. The current study emphasizes the influence of interface structure on the mechanical and functional properties of composites, and presents a promising approach for the development of structure/functional integrated composites with enhanced properties.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.