Jianqing Wang, Josep Peñuelas, Xiuzhen Shi, Yuan Liu, Manuel Delgado Baquerizo, Jiaoyan Mao, Guoyou Zhang, Cheng Liu, Genxing Pan
{"title":"在二氧化碳升高和气候变暖的条件下,土壤微生物的生物多样性有助于实现多种生态系统功能","authors":"Jianqing Wang, Josep Peñuelas, Xiuzhen Shi, Yuan Liu, Manuel Delgado Baquerizo, Jiaoyan Mao, Guoyou Zhang, Cheng Liu, Genxing Pan","doi":"10.1038/s43247-024-01767-z","DOIUrl":null,"url":null,"abstract":"The contribution of the soil microbes to agroecosystem multifunctionality under global change remains poorly understood. Here, based on data from a field experiment involving elevated carbon dioxide (CO2) and warming in a rice-wheat agroecosystem, we found that soil microbes influence the impact of climate change on agroecosystem functions. The stability of food production during the rice season increased under elevated CO2 but decreased under warming, with no significant changes in the wheat season. The interactive influences of elevated CO2 and warming on agroecosystem multifunctionality were found to be minimal. The abundance of soil fungi and nematode was associated with agroecosystem stability during the rice and wheat seasons, respectively. Soil archaeal diversity and bacterial abundance were linked to agroecosystem multifunctionality in the rice and wheat seasons, respectively. Our work proves the positive effects of soil microbes on agroecosystem functions and highlights the implications of maintaining microbial diversity for agroecosystem health under climate change. Under elevated CO2 and temperature conditions, agroecosystem stability is closely associated with soil fungal and nematode abundance during the rice and wheat growing season respectively, according to field data from a rice-wheat agroecosystem experiment in Jiangsu Province, China.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01767-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Soil microbial biodiversity supports the delivery of multiple ecosystem functions under elevated CO2 and warming\",\"authors\":\"Jianqing Wang, Josep Peñuelas, Xiuzhen Shi, Yuan Liu, Manuel Delgado Baquerizo, Jiaoyan Mao, Guoyou Zhang, Cheng Liu, Genxing Pan\",\"doi\":\"10.1038/s43247-024-01767-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The contribution of the soil microbes to agroecosystem multifunctionality under global change remains poorly understood. Here, based on data from a field experiment involving elevated carbon dioxide (CO2) and warming in a rice-wheat agroecosystem, we found that soil microbes influence the impact of climate change on agroecosystem functions. The stability of food production during the rice season increased under elevated CO2 but decreased under warming, with no significant changes in the wheat season. The interactive influences of elevated CO2 and warming on agroecosystem multifunctionality were found to be minimal. The abundance of soil fungi and nematode was associated with agroecosystem stability during the rice and wheat seasons, respectively. Soil archaeal diversity and bacterial abundance were linked to agroecosystem multifunctionality in the rice and wheat seasons, respectively. Our work proves the positive effects of soil microbes on agroecosystem functions and highlights the implications of maintaining microbial diversity for agroecosystem health under climate change. Under elevated CO2 and temperature conditions, agroecosystem stability is closely associated with soil fungal and nematode abundance during the rice and wheat growing season respectively, according to field data from a rice-wheat agroecosystem experiment in Jiangsu Province, China.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01767-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01767-z\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01767-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Soil microbial biodiversity supports the delivery of multiple ecosystem functions under elevated CO2 and warming
The contribution of the soil microbes to agroecosystem multifunctionality under global change remains poorly understood. Here, based on data from a field experiment involving elevated carbon dioxide (CO2) and warming in a rice-wheat agroecosystem, we found that soil microbes influence the impact of climate change on agroecosystem functions. The stability of food production during the rice season increased under elevated CO2 but decreased under warming, with no significant changes in the wheat season. The interactive influences of elevated CO2 and warming on agroecosystem multifunctionality were found to be minimal. The abundance of soil fungi and nematode was associated with agroecosystem stability during the rice and wheat seasons, respectively. Soil archaeal diversity and bacterial abundance were linked to agroecosystem multifunctionality in the rice and wheat seasons, respectively. Our work proves the positive effects of soil microbes on agroecosystem functions and highlights the implications of maintaining microbial diversity for agroecosystem health under climate change. Under elevated CO2 and temperature conditions, agroecosystem stability is closely associated with soil fungal and nematode abundance during the rice and wheat growing season respectively, according to field data from a rice-wheat agroecosystem experiment in Jiangsu Province, China.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.