Qianhui Li, Wenbing Shi, Lina Yu, Changwen Yang, Chun Zhu
{"title":"地下采矿作用下不同表面形状的边坡变形和裂隙网试验评估","authors":"Qianhui Li, Wenbing Shi, Lina Yu, Changwen Yang, Chun Zhu","doi":"10.1007/s10064-024-03967-5","DOIUrl":null,"url":null,"abstract":"<div><p>The mountainous region of southwest China is rich in mineral resources; however, its complex topography and geological conditions make underground mining susceptible to triggering geological hazards. To comprehensively understand the mechanisms of mining-induced slope instability, generalized models of linear, concave, and concave-convex slopes were developed. The progression from the formation of mining-induced fissure networks to slope failure was analyzed using base friction tests, digital photogrammetry for deformation measurement (DPDM) technology, and fractal theory. The results indicate that an increase in mining area, number of layers, and depth leads to continuous adjustments in fissure networks and formation dislocations, resulting in diverse interactions and developmental trajectories. Fissures propagate toward the surface, increasing the fractured rock mass and decreasing slope stability. The maximum displacement occurring in the direct roof and the upper-middle part of the slope, and the maximum shear strain concentrated in the direct roof, the leading and trailing edges of the slope, and the shear failure zones. Slope shape influences deformation and failure modes: linear and concave slopes undergo creepsliding and fracturing, whereas concave-convex slopes are more prone to bending and fracturing. The fractal dimension is directly proportional to mining depth, while the probability distribution index is inversely proportional to mining depth, indicating that the fissure development mechanism evolves from micro-fissure formation to large-scale fissure. The increasing complexity in the boundaries of fissure networks is accompanied by expansion, compaction, and penetration. These findings provide a foundation for the accurate assessment of mining-induced geological hazards in slopes with similar geometric configurations.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test evaluation of slope deformation and fissure network with different surface shapes under the action of underground mining\",\"authors\":\"Qianhui Li, Wenbing Shi, Lina Yu, Changwen Yang, Chun Zhu\",\"doi\":\"10.1007/s10064-024-03967-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mountainous region of southwest China is rich in mineral resources; however, its complex topography and geological conditions make underground mining susceptible to triggering geological hazards. To comprehensively understand the mechanisms of mining-induced slope instability, generalized models of linear, concave, and concave-convex slopes were developed. The progression from the formation of mining-induced fissure networks to slope failure was analyzed using base friction tests, digital photogrammetry for deformation measurement (DPDM) technology, and fractal theory. The results indicate that an increase in mining area, number of layers, and depth leads to continuous adjustments in fissure networks and formation dislocations, resulting in diverse interactions and developmental trajectories. Fissures propagate toward the surface, increasing the fractured rock mass and decreasing slope stability. The maximum displacement occurring in the direct roof and the upper-middle part of the slope, and the maximum shear strain concentrated in the direct roof, the leading and trailing edges of the slope, and the shear failure zones. Slope shape influences deformation and failure modes: linear and concave slopes undergo creepsliding and fracturing, whereas concave-convex slopes are more prone to bending and fracturing. The fractal dimension is directly proportional to mining depth, while the probability distribution index is inversely proportional to mining depth, indicating that the fissure development mechanism evolves from micro-fissure formation to large-scale fissure. The increasing complexity in the boundaries of fissure networks is accompanied by expansion, compaction, and penetration. These findings provide a foundation for the accurate assessment of mining-induced geological hazards in slopes with similar geometric configurations.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03967-5\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03967-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Test evaluation of slope deformation and fissure network with different surface shapes under the action of underground mining
The mountainous region of southwest China is rich in mineral resources; however, its complex topography and geological conditions make underground mining susceptible to triggering geological hazards. To comprehensively understand the mechanisms of mining-induced slope instability, generalized models of linear, concave, and concave-convex slopes were developed. The progression from the formation of mining-induced fissure networks to slope failure was analyzed using base friction tests, digital photogrammetry for deformation measurement (DPDM) technology, and fractal theory. The results indicate that an increase in mining area, number of layers, and depth leads to continuous adjustments in fissure networks and formation dislocations, resulting in diverse interactions and developmental trajectories. Fissures propagate toward the surface, increasing the fractured rock mass and decreasing slope stability. The maximum displacement occurring in the direct roof and the upper-middle part of the slope, and the maximum shear strain concentrated in the direct roof, the leading and trailing edges of the slope, and the shear failure zones. Slope shape influences deformation and failure modes: linear and concave slopes undergo creepsliding and fracturing, whereas concave-convex slopes are more prone to bending and fracturing. The fractal dimension is directly proportional to mining depth, while the probability distribution index is inversely proportional to mining depth, indicating that the fissure development mechanism evolves from micro-fissure formation to large-scale fissure. The increasing complexity in the boundaries of fissure networks is accompanied by expansion, compaction, and penetration. These findings provide a foundation for the accurate assessment of mining-induced geological hazards in slopes with similar geometric configurations.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.