用于增强气体分离的 MOF 膜:材料、机理和应用前景--全面考察

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Chong Jia, Xiangmeng Chen, Wanxi Peng, Qing Yu, Daihui Zhang, Yuxiang Huang, Guanyan Li, Mashallah Rezakazemi, Runzhou Huang
{"title":"用于增强气体分离的 MOF 膜:材料、机理和应用前景--全面考察","authors":"Chong Jia,&nbsp;Xiangmeng Chen,&nbsp;Wanxi Peng,&nbsp;Qing Yu,&nbsp;Daihui Zhang,&nbsp;Yuxiang Huang,&nbsp;Guanyan Li,&nbsp;Mashallah Rezakazemi,&nbsp;Runzhou Huang","doi":"10.1007/s42114-024-01022-1","DOIUrl":null,"url":null,"abstract":"<div><p>In recent decades, the development of advanced materials with high-performance capabilities for gas separation have become a prominent area of research. Metal–organic frameworks (MOFs) have emerged as a potential platform for membrane-based gas separation owing to their unique structural characteristics including high porosity, strong adsorption capacity, and superior selectivity, which can be scaled up for industrial applications. This review aims to present the latest advancements in synthesizing and applying MOFs-based membranes for various gas separation purposes. Additionally, the gas separation and purification mechanisms utilized by MOFs-derived membranes have been extensively discussed. Furthermore, the impact of the nanostructure and composition of MOFs-based materials on gas separation efficiency and selectivity is revealed. The application prospects for MOFs-based membranes are substantial and diverse. These membranes can significantly enhance the efficiency of gas separation processes in various industries, including natural gas purification, hydrogen production, carbon capture, and air separation. For instance, in the energy sector, efficient CO<sub>2</sub> separation using MOF membranes can contribute to reducing greenhouse gas emissions and enhancing the sustainability of fossil fuel usage. In hydrogen production, MOF membranes can improve the separation efficiency between hydrogen and other gases, thereby promoting cleaner energy sources. Overall, this review serves as a foundation for developing advanced MOFs-based membranes, which are expected to play a significant role in enhancing gas separation and purification efficiency.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOF membranes for enhanced gas separation: materials, mechanisms, and application prospects—a comprehensive survey\",\"authors\":\"Chong Jia,&nbsp;Xiangmeng Chen,&nbsp;Wanxi Peng,&nbsp;Qing Yu,&nbsp;Daihui Zhang,&nbsp;Yuxiang Huang,&nbsp;Guanyan Li,&nbsp;Mashallah Rezakazemi,&nbsp;Runzhou Huang\",\"doi\":\"10.1007/s42114-024-01022-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent decades, the development of advanced materials with high-performance capabilities for gas separation have become a prominent area of research. Metal–organic frameworks (MOFs) have emerged as a potential platform for membrane-based gas separation owing to their unique structural characteristics including high porosity, strong adsorption capacity, and superior selectivity, which can be scaled up for industrial applications. This review aims to present the latest advancements in synthesizing and applying MOFs-based membranes for various gas separation purposes. Additionally, the gas separation and purification mechanisms utilized by MOFs-derived membranes have been extensively discussed. Furthermore, the impact of the nanostructure and composition of MOFs-based materials on gas separation efficiency and selectivity is revealed. The application prospects for MOFs-based membranes are substantial and diverse. These membranes can significantly enhance the efficiency of gas separation processes in various industries, including natural gas purification, hydrogen production, carbon capture, and air separation. For instance, in the energy sector, efficient CO<sub>2</sub> separation using MOF membranes can contribute to reducing greenhouse gas emissions and enhancing the sustainability of fossil fuel usage. In hydrogen production, MOF membranes can improve the separation efficiency between hydrogen and other gases, thereby promoting cleaner energy sources. Overall, this review serves as a foundation for developing advanced MOFs-based membranes, which are expected to play a significant role in enhancing gas separation and purification efficiency.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01022-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01022-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,开发具有高性能气体分离功能的先进材料已成为一个突出的研究领域。金属有机框架(MOFs)因其独特的结构特征,包括高孔隙率、强吸附能力和卓越的选择性,已成为基于膜的气体分离的潜在平台,并可放大用于工业应用。本综述旨在介绍基于 MOFs 的膜在合成和应用于各种气体分离用途方面的最新进展。此外,还广泛讨论了 MOFs 衍生膜的气体分离和净化机制。此外,还揭示了基于 MOFs 的材料的纳米结构和组成对气体分离效率和选择性的影响。基于 MOFs 的膜的应用前景广泛且多样。这些膜可以大大提高天然气净化、氢气生产、碳捕获和空气分离等各行各业气体分离过程的效率。例如,在能源领域,使用 MOF 膜进行高效的二氧化碳分离有助于减少温室气体排放和提高化石燃料使用的可持续性。在制氢领域,MOF 膜可以提高氢气和其他气体的分离效率,从而促进清洁能源的发展。总之,本综述为开发基于 MOFs 的先进膜奠定了基础,这些膜有望在提高气体分离和净化效率方面发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MOF membranes for enhanced gas separation: materials, mechanisms, and application prospects—a comprehensive survey

In recent decades, the development of advanced materials with high-performance capabilities for gas separation have become a prominent area of research. Metal–organic frameworks (MOFs) have emerged as a potential platform for membrane-based gas separation owing to their unique structural characteristics including high porosity, strong adsorption capacity, and superior selectivity, which can be scaled up for industrial applications. This review aims to present the latest advancements in synthesizing and applying MOFs-based membranes for various gas separation purposes. Additionally, the gas separation and purification mechanisms utilized by MOFs-derived membranes have been extensively discussed. Furthermore, the impact of the nanostructure and composition of MOFs-based materials on gas separation efficiency and selectivity is revealed. The application prospects for MOFs-based membranes are substantial and diverse. These membranes can significantly enhance the efficiency of gas separation processes in various industries, including natural gas purification, hydrogen production, carbon capture, and air separation. For instance, in the energy sector, efficient CO2 separation using MOF membranes can contribute to reducing greenhouse gas emissions and enhancing the sustainability of fossil fuel usage. In hydrogen production, MOF membranes can improve the separation efficiency between hydrogen and other gases, thereby promoting cleaner energy sources. Overall, this review serves as a foundation for developing advanced MOFs-based membranes, which are expected to play a significant role in enhancing gas separation and purification efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信