基于 BODIPY 的纳米粒子用于抗耐药细菌感染的高效光热/气体协同疗法

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuang Song, Na Yang, Muhammad Azhar Hayat Nawaz, Di He, Wenzhao Han, Baosheng Sun, Casper Steinmann, Hong Qi, Ying Li, Xiande Shen, Cong Yu
{"title":"基于 BODIPY 的纳米粒子用于抗耐药细菌感染的高效光热/气体协同疗法","authors":"Shuang Song,&nbsp;Na Yang,&nbsp;Muhammad Azhar Hayat Nawaz,&nbsp;Di He,&nbsp;Wenzhao Han,&nbsp;Baosheng Sun,&nbsp;Casper Steinmann,&nbsp;Hong Qi,&nbsp;Ying Li,&nbsp;Xiande Shen,&nbsp;Cong Yu","doi":"10.1007/s10853-024-10351-x","DOIUrl":null,"url":null,"abstract":"<div><p>Drug-resistant bacterial wound infections have become a major threat to human health worldwide, and there is an urgent need to develop a new generation of antibacterial agents to replace conventional antibiotics. In this work, we proposed an efficient nanoplatform that combines photothermal therapy (PTT) and light-triggered release of nitric oxide (NO) to combat bacteria. A multifunctional nanoplatform (BBDH NPs) based on a BODIPY probe, NO thermal responsive donor [<i>N</i>, <i>N</i>′-di-sec-butyl-<i>N</i>, <i>N</i>′-diniroso-1,4-phenylenediamine (BNN6)], and a PEGylated polymer was prepared with a nanoprecipitation method. BBDH NPs represent a one-two punch against bacterial infections, combining potent photothermal therapy and the controlled release of NO, enabling rapid and efficient eradication of gram-negative and gram-positive bacteria. Histological analysis on a mouse model demonstrates that wounds treated with BBDH NPs and 685 nm laser irradiation have completed re-epithelialization, significant collagen deposition, and a number of hair follicle formation. BBDH NPs also exhibit a remarkable therapeutic effect on wounds infected with methicillin-resistant Staphylococcus aureus (MRSA). These results highlight that the proposed synergistic antibacterial strategy can be used as a potential therapeutic tool in drug-resistant, bacterial-infected wounds.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 41","pages":"19628 - 19641"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BODIPY-based nanoparticles for highly efficient photothermal/gas synergistic therapy against drug-resistant bacterial infection\",\"authors\":\"Shuang Song,&nbsp;Na Yang,&nbsp;Muhammad Azhar Hayat Nawaz,&nbsp;Di He,&nbsp;Wenzhao Han,&nbsp;Baosheng Sun,&nbsp;Casper Steinmann,&nbsp;Hong Qi,&nbsp;Ying Li,&nbsp;Xiande Shen,&nbsp;Cong Yu\",\"doi\":\"10.1007/s10853-024-10351-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Drug-resistant bacterial wound infections have become a major threat to human health worldwide, and there is an urgent need to develop a new generation of antibacterial agents to replace conventional antibiotics. In this work, we proposed an efficient nanoplatform that combines photothermal therapy (PTT) and light-triggered release of nitric oxide (NO) to combat bacteria. A multifunctional nanoplatform (BBDH NPs) based on a BODIPY probe, NO thermal responsive donor [<i>N</i>, <i>N</i>′-di-sec-butyl-<i>N</i>, <i>N</i>′-diniroso-1,4-phenylenediamine (BNN6)], and a PEGylated polymer was prepared with a nanoprecipitation method. BBDH NPs represent a one-two punch against bacterial infections, combining potent photothermal therapy and the controlled release of NO, enabling rapid and efficient eradication of gram-negative and gram-positive bacteria. Histological analysis on a mouse model demonstrates that wounds treated with BBDH NPs and 685 nm laser irradiation have completed re-epithelialization, significant collagen deposition, and a number of hair follicle formation. BBDH NPs also exhibit a remarkable therapeutic effect on wounds infected with methicillin-resistant Staphylococcus aureus (MRSA). These results highlight that the proposed synergistic antibacterial strategy can be used as a potential therapeutic tool in drug-resistant, bacterial-infected wounds.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"59 41\",\"pages\":\"19628 - 19641\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-024-10351-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10351-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

耐药性细菌伤口感染已成为全球人类健康的一大威胁,因此迫切需要开发新一代抗菌剂来替代传统抗生素。在这项工作中,我们提出了一种结合光热疗法(PTT)和光触发一氧化氮(NO)释放的高效纳米平台来对抗细菌。我们采用纳米沉淀法制备了一种多功能纳米平台(BBDH NPs),它基于 BODIPY 探针、一氧化氮热反应供体 [N,N′-二仲丁基-N,N′-二亚硝基-1,4-苯二胺 (BNN6)]和 PEG 化聚合物。BBDH NPs 是对抗细菌感染的一记重拳,它结合了强效光热疗法和氮氧化物的可控释放,能快速有效地消灭革兰氏阴性和革兰氏阳性细菌。对小鼠模型的组织学分析表明,使用 BBDH NPs 和 685 纳米激光照射的伤口已完成再上皮化,胶原蛋白显著沉积,并有大量毛囊形成。BBDH NPs 对感染耐甲氧西林金黄色葡萄球菌(MRSA)的伤口也有显著的治疗效果。这些结果表明,所提出的协同抗菌策略可作为一种潜在的治疗工具,用于耐药性细菌感染的伤口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BODIPY-based nanoparticles for highly efficient photothermal/gas synergistic therapy against drug-resistant bacterial infection

Drug-resistant bacterial wound infections have become a major threat to human health worldwide, and there is an urgent need to develop a new generation of antibacterial agents to replace conventional antibiotics. In this work, we proposed an efficient nanoplatform that combines photothermal therapy (PTT) and light-triggered release of nitric oxide (NO) to combat bacteria. A multifunctional nanoplatform (BBDH NPs) based on a BODIPY probe, NO thermal responsive donor [N, N′-di-sec-butyl-N, N′-diniroso-1,4-phenylenediamine (BNN6)], and a PEGylated polymer was prepared with a nanoprecipitation method. BBDH NPs represent a one-two punch against bacterial infections, combining potent photothermal therapy and the controlled release of NO, enabling rapid and efficient eradication of gram-negative and gram-positive bacteria. Histological analysis on a mouse model demonstrates that wounds treated with BBDH NPs and 685 nm laser irradiation have completed re-epithelialization, significant collagen deposition, and a number of hair follicle formation. BBDH NPs also exhibit a remarkable therapeutic effect on wounds infected with methicillin-resistant Staphylococcus aureus (MRSA). These results highlight that the proposed synergistic antibacterial strategy can be used as a potential therapeutic tool in drug-resistant, bacterial-infected wounds.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信