Yu. M. Bunkov, V. I. Belotelov, P. M. Vetoshko, G. A. Knyazev, A. N. Kuzmichev, P. E. Petrov
{"title":"钇铁石榴石薄膜中的磁子超电流和相滑移","authors":"Yu. M. Bunkov, V. I. Belotelov, P. M. Vetoshko, G. A. Knyazev, A. N. Kuzmichev, P. E. Petrov","doi":"10.1134/S0021364024603117","DOIUrl":null,"url":null,"abstract":"<p>Exactly forty years ago, the spin superfluidity and Bose–Einstein condensation of magnons in superfluid antiferromagnetic <sup>3</sup>He-B were discovered. In this work, the existence of spin superfluidity and phase slippage in an yttrium iron garnet film at room temperature is demonstrated using the optical Faraday effect. The s-patial distribution of the phase and amplitude of the spin precession under the conditions of magnon Bose‒Einstein condensation are studied by varying the pump phase difference between two strip lines exciting magnons.</p>","PeriodicalId":604,"journal":{"name":"JETP Letters","volume":"120 6","pages":"421 - 427"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0021364024603117.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnon Supercurrent and the Phase Slippage in an Yttrium Iron Garnet Film\",\"authors\":\"Yu. M. Bunkov, V. I. Belotelov, P. M. Vetoshko, G. A. Knyazev, A. N. Kuzmichev, P. E. Petrov\",\"doi\":\"10.1134/S0021364024603117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exactly forty years ago, the spin superfluidity and Bose–Einstein condensation of magnons in superfluid antiferromagnetic <sup>3</sup>He-B were discovered. In this work, the existence of spin superfluidity and phase slippage in an yttrium iron garnet film at room temperature is demonstrated using the optical Faraday effect. The s-patial distribution of the phase and amplitude of the spin precession under the conditions of magnon Bose‒Einstein condensation are studied by varying the pump phase difference between two strip lines exciting magnons.</p>\",\"PeriodicalId\":604,\"journal\":{\"name\":\"JETP Letters\",\"volume\":\"120 6\",\"pages\":\"421 - 427\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S0021364024603117.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JETP Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0021364024603117\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JETP Letters","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0021364024603117","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
整整四十年前,人们发现了超流体反铁磁性 3He-B 中磁子的自旋超流动性和玻色-爱因斯坦凝聚。在这项工作中,利用光学法拉第效应证明了室温下钇铁石榴石薄膜中存在自旋超流和相滑移。通过改变激发磁子的两条带状线之间的泵浦相位差,研究了磁子玻色-爱因斯坦凝聚条件下自旋前驱相位和振幅的 s 空间分布。
Magnon Supercurrent and the Phase Slippage in an Yttrium Iron Garnet Film
Exactly forty years ago, the spin superfluidity and Bose–Einstein condensation of magnons in superfluid antiferromagnetic 3He-B were discovered. In this work, the existence of spin superfluidity and phase slippage in an yttrium iron garnet film at room temperature is demonstrated using the optical Faraday effect. The s-patial distribution of the phase and amplitude of the spin precession under the conditions of magnon Bose‒Einstein condensation are studied by varying the pump phase difference between two strip lines exciting magnons.
期刊介绍:
All topics of experimental and theoretical physics including gravitation, field theory, elementary particles and nuclei, plasma, nonlinear phenomena, condensed matter, superconductivity, superfluidity, lasers, and surfaces.