{"title":"可持续生产化学品和单体的羧化反应","authors":"Laura Faba and Salvador Ordóñez","doi":"10.1039/D4SU00482E","DOIUrl":null,"url":null,"abstract":"<p >Carboxylation stands out as one of the most versatile and viable routes for carbon dioxide fixation, a crucial chemical transformation essential for advancing capture technologies and fostering a sustainable industry. The carboxylic acids and derivatives produced through this process hold considerable interest for various sectors, including pharmaceuticals and polymers. Presently, most of these chemicals are derived from non-renewable resources, underscoring the imperative need to develop sustainable pathways for their synthesis. The inherent stability of the CO<small><sub>2</sub></small> molecule, owing to its high oxidation state and linear configuration, poses significant challenges for activation. Diverse approaches, including photochemical, electrochemical, enzymatic, and thermochemical carboxylation have been explored. While noteworthy results have been achieved with these methods, substantial efforts are still required to facilitate their scalability. This review provides a comprehensive overview of each of these routes, elucidating their respective strengths and weaknesses. Emphasis is placed on thermochemical routes, given their proximity to potential industrial-scale application.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 11","pages":" 3167-3182"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00482e?page=search","citationCount":"0","resultStr":"{\"title\":\"Carboxylation reactions for the sustainable manufacture of chemicals and monomers\",\"authors\":\"Laura Faba and Salvador Ordóñez\",\"doi\":\"10.1039/D4SU00482E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Carboxylation stands out as one of the most versatile and viable routes for carbon dioxide fixation, a crucial chemical transformation essential for advancing capture technologies and fostering a sustainable industry. The carboxylic acids and derivatives produced through this process hold considerable interest for various sectors, including pharmaceuticals and polymers. Presently, most of these chemicals are derived from non-renewable resources, underscoring the imperative need to develop sustainable pathways for their synthesis. The inherent stability of the CO<small><sub>2</sub></small> molecule, owing to its high oxidation state and linear configuration, poses significant challenges for activation. Diverse approaches, including photochemical, electrochemical, enzymatic, and thermochemical carboxylation have been explored. While noteworthy results have been achieved with these methods, substantial efforts are still required to facilitate their scalability. This review provides a comprehensive overview of each of these routes, elucidating their respective strengths and weaknesses. Emphasis is placed on thermochemical routes, given their proximity to potential industrial-scale application.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 11\",\"pages\":\" 3167-3182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00482e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00482e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00482e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carboxylation reactions for the sustainable manufacture of chemicals and monomers
Carboxylation stands out as one of the most versatile and viable routes for carbon dioxide fixation, a crucial chemical transformation essential for advancing capture technologies and fostering a sustainable industry. The carboxylic acids and derivatives produced through this process hold considerable interest for various sectors, including pharmaceuticals and polymers. Presently, most of these chemicals are derived from non-renewable resources, underscoring the imperative need to develop sustainable pathways for their synthesis. The inherent stability of the CO2 molecule, owing to its high oxidation state and linear configuration, poses significant challenges for activation. Diverse approaches, including photochemical, electrochemical, enzymatic, and thermochemical carboxylation have been explored. While noteworthy results have been achieved with these methods, substantial efforts are still required to facilitate their scalability. This review provides a comprehensive overview of each of these routes, elucidating their respective strengths and weaknesses. Emphasis is placed on thermochemical routes, given their proximity to potential industrial-scale application.