随机镜像后裔算法的几乎确定收敛性和非渐近集中限界

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Anik Kumar Paul;Arun D. Mahindrakar;Rachel K. Kalaimani
{"title":"随机镜像后裔算法的几乎确定收敛性和非渐近集中限界","authors":"Anik Kumar Paul;Arun D. Mahindrakar;Rachel K. Kalaimani","doi":"10.1109/LCSYS.2024.3482148","DOIUrl":null,"url":null,"abstract":"This letter investigates the convergence and concentration properties of the Stochastic Mirror Descent (SMD) algorithm utilizing biased stochastic subgradients. We establish the almost sure convergence of the algorithm’s iterates under the assumption of diminishing bias. Furthermore, we derive concentration bounds for the discrepancy between the iterates’ function values and the optimal value, based on standard assumptions. Subsequently, leveraging the assumption of Sub-Gaussian noise in stochastic subgradients, we present refined concentration bounds for this discrepancy.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2397-2402"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm\",\"authors\":\"Anik Kumar Paul;Arun D. Mahindrakar;Rachel K. Kalaimani\",\"doi\":\"10.1109/LCSYS.2024.3482148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter investigates the convergence and concentration properties of the Stochastic Mirror Descent (SMD) algorithm utilizing biased stochastic subgradients. We establish the almost sure convergence of the algorithm’s iterates under the assumption of diminishing bias. Furthermore, we derive concentration bounds for the discrepancy between the iterates’ function values and the optimal value, based on standard assumptions. Subsequently, leveraging the assumption of Sub-Gaussian noise in stochastic subgradients, we present refined concentration bounds for this discrepancy.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2397-2402\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720112/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10720112/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

这篇文章研究了利用偏置随机子梯度的随机镜像后裔(SMD)算法的收敛性和集中特性。在偏差递减的假设下,我们确定了算法迭代的几乎确定收敛性。此外,我们还基于标准假设,推导出了迭代函数值与最优值之间差异的集中约束。随后,利用随机子梯度中的亚高斯噪声假设,我们提出了这一差异的精炼集中限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm
This letter investigates the convergence and concentration properties of the Stochastic Mirror Descent (SMD) algorithm utilizing biased stochastic subgradients. We establish the almost sure convergence of the algorithm’s iterates under the assumption of diminishing bias. Furthermore, we derive concentration bounds for the discrepancy between the iterates’ function values and the optimal value, based on standard assumptions. Subsequently, leveraging the assumption of Sub-Gaussian noise in stochastic subgradients, we present refined concentration bounds for this discrepancy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信