Carlos Natalino;Talles Magalhaes;Farhad Arpanaei;Fabricio R. L. Lobato;Joao C. W. A. Costa;Jose Alberto Hernandez;Paolo Monti
{"title":"光网络健身房:用于解决光网络资源分配问题的开源工具包","authors":"Carlos Natalino;Talles Magalhaes;Farhad Arpanaei;Fabricio R. L. Lobato;Joao C. W. A. Costa;Jose Alberto Hernandez;Paolo Monti","doi":"10.1364/JOCN.532850","DOIUrl":null,"url":null,"abstract":"The dynamic provisioning of optical network services requires algorithms to find a suitable solution given the specific service requirements and the current network state. These algorithms are usually evaluated using a software simulator developed ad hoc, which may require different levels of detail depending on the problem addressed and how realistic the evaluation needs to be. Moreover, to demonstrate they are a significant contribution to the field, these new algorithms must be benchmarked against the best-performing previously proposed solutions. Due to the large set of parameters and their wide range of possible values, benchmarking algorithms from the literature is not straightforward and can quickly become challenging and time-consuming. This work introduces the Optical Networking Gym, an open-source toolkit that simplifies implementing optical resource assignment simulations and benchmarking new solutions against previously published algorithms. The toolkit provides environments modeling relevant optical networking scenarios, common algorithms for solving problems related to these scenarios, and a set of scripts to prepare and execute simulations for various use cases. Currently, four environments are available, with the possibility of increasing this number through contributions from the co-authors and the community. This paper describes the architecture, interface, environments, and scripts included with the toolkit. We adopt the quality of transmission (QoT)-aware dynamic resource allocation of optical services as the network scenario under examination. Three use cases highlight the toolkit’s modularity, flexibility, and performance. The toolkit allows researchers to streamline the process of developing simulation scenarios and algorithms, enhancing their ability to benchmark their algorithms.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 12","pages":"G40-G51"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Networking Gym: an open-source toolkit for resource assignment problems in optical networks\",\"authors\":\"Carlos Natalino;Talles Magalhaes;Farhad Arpanaei;Fabricio R. L. Lobato;Joao C. W. A. Costa;Jose Alberto Hernandez;Paolo Monti\",\"doi\":\"10.1364/JOCN.532850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic provisioning of optical network services requires algorithms to find a suitable solution given the specific service requirements and the current network state. These algorithms are usually evaluated using a software simulator developed ad hoc, which may require different levels of detail depending on the problem addressed and how realistic the evaluation needs to be. Moreover, to demonstrate they are a significant contribution to the field, these new algorithms must be benchmarked against the best-performing previously proposed solutions. Due to the large set of parameters and their wide range of possible values, benchmarking algorithms from the literature is not straightforward and can quickly become challenging and time-consuming. This work introduces the Optical Networking Gym, an open-source toolkit that simplifies implementing optical resource assignment simulations and benchmarking new solutions against previously published algorithms. The toolkit provides environments modeling relevant optical networking scenarios, common algorithms for solving problems related to these scenarios, and a set of scripts to prepare and execute simulations for various use cases. Currently, four environments are available, with the possibility of increasing this number through contributions from the co-authors and the community. This paper describes the architecture, interface, environments, and scripts included with the toolkit. We adopt the quality of transmission (QoT)-aware dynamic resource allocation of optical services as the network scenario under examination. Three use cases highlight the toolkit’s modularity, flexibility, and performance. The toolkit allows researchers to streamline the process of developing simulation scenarios and algorithms, enhancing their ability to benchmark their algorithms.\",\"PeriodicalId\":50103,\"journal\":{\"name\":\"Journal of Optical Communications and Networking\",\"volume\":\"16 12\",\"pages\":\"G40-G51\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740565/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740565/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Optical Networking Gym: an open-source toolkit for resource assignment problems in optical networks
The dynamic provisioning of optical network services requires algorithms to find a suitable solution given the specific service requirements and the current network state. These algorithms are usually evaluated using a software simulator developed ad hoc, which may require different levels of detail depending on the problem addressed and how realistic the evaluation needs to be. Moreover, to demonstrate they are a significant contribution to the field, these new algorithms must be benchmarked against the best-performing previously proposed solutions. Due to the large set of parameters and their wide range of possible values, benchmarking algorithms from the literature is not straightforward and can quickly become challenging and time-consuming. This work introduces the Optical Networking Gym, an open-source toolkit that simplifies implementing optical resource assignment simulations and benchmarking new solutions against previously published algorithms. The toolkit provides environments modeling relevant optical networking scenarios, common algorithms for solving problems related to these scenarios, and a set of scripts to prepare and execute simulations for various use cases. Currently, four environments are available, with the possibility of increasing this number through contributions from the co-authors and the community. This paper describes the architecture, interface, environments, and scripts included with the toolkit. We adopt the quality of transmission (QoT)-aware dynamic resource allocation of optical services as the network scenario under examination. Three use cases highlight the toolkit’s modularity, flexibility, and performance. The toolkit allows researchers to streamline the process of developing simulation scenarios and algorithms, enhancing their ability to benchmark their algorithms.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.