用于行人轨迹预测的双对齐域自适应技术

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Wenzhan Li;Fuhao Li;Xinghui Jing;Pingfa Feng;Long Zeng
{"title":"用于行人轨迹预测的双对齐域自适应技术","authors":"Wenzhan Li;Fuhao Li;Xinghui Jing;Pingfa Feng;Long Zeng","doi":"10.1109/LRA.2024.3481831","DOIUrl":null,"url":null,"abstract":"Predicting the plausible future paths of pedestrians is essential for human-involved applications (e.g., autonomous driving and service robotics). Existing pedestrian trajectory prediction methods mainly focus on the performance of multi-scene trained models in single-scene tests, neglecting the cross-scene knowledge differences in practice. To address this issue, we propose a generic dual-alignment framework for pedestrian trajectory prediction. Concretely, we analyze the domain difference at macro and micro scales and mitigate them respectively: at macro scale, an attention-based temporal convolutional generative model transfers the paths of pedestrians and their interaction information from the source domain to the target domain to align the data-level distributions; at micro scale, an auxiliary adversarial network is integrated to assist in training the prediction network to align the feature-level domain-invariant knowledge. Cross-domain experiments demonstrate that our approach significantly improves the performance of existing pedestrian trajectory prediction benchmarks (up to 53.5%) and outperforms previous domain adaptive works (up to 41.7%).","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"10962-10969"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Alignment Domain Adaptation for Pedestrian Trajectory Prediction\",\"authors\":\"Wenzhan Li;Fuhao Li;Xinghui Jing;Pingfa Feng;Long Zeng\",\"doi\":\"10.1109/LRA.2024.3481831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the plausible future paths of pedestrians is essential for human-involved applications (e.g., autonomous driving and service robotics). Existing pedestrian trajectory prediction methods mainly focus on the performance of multi-scene trained models in single-scene tests, neglecting the cross-scene knowledge differences in practice. To address this issue, we propose a generic dual-alignment framework for pedestrian trajectory prediction. Concretely, we analyze the domain difference at macro and micro scales and mitigate them respectively: at macro scale, an attention-based temporal convolutional generative model transfers the paths of pedestrians and their interaction information from the source domain to the target domain to align the data-level distributions; at micro scale, an auxiliary adversarial network is integrated to assist in training the prediction network to align the feature-level domain-invariant knowledge. Cross-domain experiments demonstrate that our approach significantly improves the performance of existing pedestrian trajectory prediction benchmarks (up to 53.5%) and outperforms previous domain adaptive works (up to 41.7%).\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"10962-10969\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10719677/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10719677/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

预测行人可信的未来路径对于人类参与的应用(如自动驾驶和服务机器人)至关重要。现有的行人轨迹预测方法主要关注多场景训练模型在单场景测试中的表现,而忽视了实际应用中的跨场景知识差异。针对这一问题,我们提出了一种通用的行人轨迹预测双重对齐框架。具体来说,我们分析了宏观和微观尺度上的领域差异,并分别加以缓解:在宏观尺度上,一个基于注意力的时空卷积生成模型将行人的路径及其交互信息从源领域转移到目标领域,以对齐数据级分布;在微观尺度上,集成了一个辅助对抗网络,以辅助预测网络的训练,从而对齐特征级的领域不变知识。跨域实验证明,我们的方法显著提高了现有行人轨迹预测基准的性能(高达 53.5%),并优于之前的域自适应工作(高达 41.7%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Alignment Domain Adaptation for Pedestrian Trajectory Prediction
Predicting the plausible future paths of pedestrians is essential for human-involved applications (e.g., autonomous driving and service robotics). Existing pedestrian trajectory prediction methods mainly focus on the performance of multi-scene trained models in single-scene tests, neglecting the cross-scene knowledge differences in practice. To address this issue, we propose a generic dual-alignment framework for pedestrian trajectory prediction. Concretely, we analyze the domain difference at macro and micro scales and mitigate them respectively: at macro scale, an attention-based temporal convolutional generative model transfers the paths of pedestrians and their interaction information from the source domain to the target domain to align the data-level distributions; at micro scale, an auxiliary adversarial network is integrated to assist in training the prediction network to align the feature-level domain-invariant knowledge. Cross-domain experiments demonstrate that our approach significantly improves the performance of existing pedestrian trajectory prediction benchmarks (up to 53.5%) and outperforms previous domain adaptive works (up to 41.7%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信