论卢里的∞ $\infty$ -operads 与树枝状的∞ $\infty$ -operads 的等价性

Pub Date : 2024-11-01 DOI:10.1112/topo.70003
Vladimir Hinich, Ieke Moerdijk
{"title":"论卢里的∞ $\\infty$ -operads 与树枝状的∞ $\\infty$ -operads 的等价性","authors":"Vladimir Hinich,&nbsp;Ieke Moerdijk","doi":"10.1112/topo.70003","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove the equivalence of two symmetric monoidal <span></span><math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-categories of <span></span><math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-operads, the one defined in Lurie [Higher algebra, available at the author's homepage, http://math.ias.edu/~lurie/, September 2017 version] and the one based on dendroidal spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70003","citationCount":"0","resultStr":"{\"title\":\"On the equivalence of Lurie's \\n \\n ∞\\n $\\\\infty$\\n -operads and dendroidal \\n \\n ∞\\n $\\\\infty$\\n -operads\",\"authors\":\"Vladimir Hinich,&nbsp;Ieke Moerdijk\",\"doi\":\"10.1112/topo.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove the equivalence of two symmetric monoidal <span></span><math>\\n <semantics>\\n <mi>∞</mi>\\n <annotation>$\\\\infty$</annotation>\\n </semantics></math>-categories of <span></span><math>\\n <semantics>\\n <mi>∞</mi>\\n <annotation>$\\\\infty$</annotation>\\n </semantics></math>-operads, the one defined in Lurie [Higher algebra, available at the author's homepage, http://math.ias.edu/~lurie/, September 2017 version] and the one based on dendroidal spaces.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.70003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了∞ $\infty$ -operads 的两个对称一元∞ $\infty$ -categories 的等价性,一个是 Lurie [高等代数,见作者主页,http://math.ias.edu/~lurie/,2017 年 9 月版]中定义的,另一个是基于树枝状空间的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the equivalence of Lurie's 
         
            ∞
            $\infty$
         -operads and dendroidal 
         
            ∞
            $\infty$
         -operads

分享
查看原文
On the equivalence of Lurie's ∞ $\infty$ -operads and dendroidal ∞ $\infty$ -operads

In this paper, we prove the equivalence of two symmetric monoidal $\infty$ -categories of $\infty$ -operads, the one defined in Lurie [Higher algebra, available at the author's homepage, http://math.ias.edu/~lurie/, September 2017 version] and the one based on dendroidal spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信