Ericks S. Soares , Leticia Y. Queiroz , Jaquelini B. Canever , Gustavo Griebner , Carolina U. Stahler , Daniel S. Mansur , Rui Daniel S. Prediger , Helena I. Cimarosti
{"title":"敲除 SENP3 可改善鼻内 MPTP 帕金森病啮齿动物模型的运动和认知障碍。","authors":"Ericks S. Soares , Leticia Y. Queiroz , Jaquelini B. Canever , Gustavo Griebner , Carolina U. Stahler , Daniel S. Mansur , Rui Daniel S. Prediger , Helena I. Cimarosti","doi":"10.1016/j.physbeh.2024.114725","DOIUrl":null,"url":null,"abstract":"<div><div>Several mechanisms underlying Parkinson's disease (PD) remain unclear, and effective treatments are still lacking. The conjugation of the small ubiquitin-like modifier (SUMO), known as SUMOylation, to key proteins in PD has shown potential beneficial effects. Considering that this process is reversed by SUMO-specific proteases (SENPs), this study addressed the effects of increased SUMO-2/3 conjugation, mediated by SENP3 knockdown, in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD. Two weeks after infusion of the shRNA-containing lentiviral vector into the dorsolateral striatum and one week following intranasal MPTP administration, male Wistar rats were evaluated using cognitive and motor behavioural tests. Infection efficiency was confirmed by detecting GFP expression in the dorsolateral striatum. SENP3 knockdown, verified by Western blotting, resulted in increased SUMO-2/3 conjugation. MPTP-administered rats displayed impairments in both recognition and spatial memories, while SENP3 knockdown prevented these deficits. Rats exposed to MPTP also exhibited motor dysfunction, which was ameliorated by SENP3 knockdown. These findings underscore the involvement of SUMO-2/3 conjugation in PD and its potential as a novel therapeutic target to counteract cognitive and motor impairments induced by neurodegeneration.</div></div>","PeriodicalId":20201,"journal":{"name":"Physiology & Behavior","volume":"288 ","pages":"Article 114725"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SENP3 knockdown improves motor and cognitive impairments in the intranasal MPTP rodent model of Parkinson's disease\",\"authors\":\"Ericks S. Soares , Leticia Y. Queiroz , Jaquelini B. Canever , Gustavo Griebner , Carolina U. Stahler , Daniel S. Mansur , Rui Daniel S. Prediger , Helena I. Cimarosti\",\"doi\":\"10.1016/j.physbeh.2024.114725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Several mechanisms underlying Parkinson's disease (PD) remain unclear, and effective treatments are still lacking. The conjugation of the small ubiquitin-like modifier (SUMO), known as SUMOylation, to key proteins in PD has shown potential beneficial effects. Considering that this process is reversed by SUMO-specific proteases (SENPs), this study addressed the effects of increased SUMO-2/3 conjugation, mediated by SENP3 knockdown, in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD. Two weeks after infusion of the shRNA-containing lentiviral vector into the dorsolateral striatum and one week following intranasal MPTP administration, male Wistar rats were evaluated using cognitive and motor behavioural tests. Infection efficiency was confirmed by detecting GFP expression in the dorsolateral striatum. SENP3 knockdown, verified by Western blotting, resulted in increased SUMO-2/3 conjugation. MPTP-administered rats displayed impairments in both recognition and spatial memories, while SENP3 knockdown prevented these deficits. Rats exposed to MPTP also exhibited motor dysfunction, which was ameliorated by SENP3 knockdown. These findings underscore the involvement of SUMO-2/3 conjugation in PD and its potential as a novel therapeutic target to counteract cognitive and motor impairments induced by neurodegeneration.</div></div>\",\"PeriodicalId\":20201,\"journal\":{\"name\":\"Physiology & Behavior\",\"volume\":\"288 \",\"pages\":\"Article 114725\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology & Behavior\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031938424002737\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology & Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031938424002737","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
SENP3 knockdown improves motor and cognitive impairments in the intranasal MPTP rodent model of Parkinson's disease
Several mechanisms underlying Parkinson's disease (PD) remain unclear, and effective treatments are still lacking. The conjugation of the small ubiquitin-like modifier (SUMO), known as SUMOylation, to key proteins in PD has shown potential beneficial effects. Considering that this process is reversed by SUMO-specific proteases (SENPs), this study addressed the effects of increased SUMO-2/3 conjugation, mediated by SENP3 knockdown, in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD. Two weeks after infusion of the shRNA-containing lentiviral vector into the dorsolateral striatum and one week following intranasal MPTP administration, male Wistar rats were evaluated using cognitive and motor behavioural tests. Infection efficiency was confirmed by detecting GFP expression in the dorsolateral striatum. SENP3 knockdown, verified by Western blotting, resulted in increased SUMO-2/3 conjugation. MPTP-administered rats displayed impairments in both recognition and spatial memories, while SENP3 knockdown prevented these deficits. Rats exposed to MPTP also exhibited motor dysfunction, which was ameliorated by SENP3 knockdown. These findings underscore the involvement of SUMO-2/3 conjugation in PD and its potential as a novel therapeutic target to counteract cognitive and motor impairments induced by neurodegeneration.
期刊介绍:
Physiology & Behavior is aimed at the causal physiological mechanisms of behavior and its modulation by environmental factors. The journal invites original reports in the broad area of behavioral and cognitive neuroscience, in which at least one variable is physiological and the primary emphasis and theoretical context are behavioral. The range of subjects includes behavioral neuroendocrinology, psychoneuroimmunology, learning and memory, ingestion, social behavior, and studies related to the mechanisms of psychopathology. Contemporary reviews and theoretical articles are welcomed and the Editors invite such proposals from interested authors.