{"title":"针对 SARS CoV-2 RNA 依赖性 RNA 聚合酶的 AYUSH-64 药用植物植物化合物的硅学探索。","authors":"Srinivasulu Cheemanapalli , Ramanjaneyulu Golla , Sudhakar Pagidi , Seshapani Pantangi","doi":"10.1016/j.jaim.2024.101026","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The AYUSH 64 formulation helps to treat mild to moderate cases of COVID-19. Although several drugs have been proposed to combat COVID-19, no medication is available for SARS-CoV-2 infection. The RNA-dependent RNA polymerase (RdRp) is the pivotal enzyme of SARS-CoV-2 replication, so it could be considered a better drug target for experimental studies.</div></div><div><h3>Objective</h3><div>The AYUSH-64 formulation plants exhibited multiple therapeutic properties; thus, the present study aims to screen the phytocompounds of these plants against SARS CoV2 RdRp to identify specific compounds that could potentially affect COVID-19 infection.</div></div><div><h3>Materials and methods</h3><div>PatchDock and AutoDock tools were used for docking experiments. MD simulations and Density Functional Theory (DFT) calculations of protein-ligand Picroside-I and Remdesivir complexes were carried out in GROMACS v2019.4 and Gaussian 09 software, respectively.</div></div><div><h3>Results</h3><div>Among the tested<strong>,</strong> five phytocompounds (Picroside I, Oleanolic acid, Arvenin I, II, and III) from AYUSH-64 medicinal plants showed possible binding with RdRp catalytic residues (Ser759, Asp760, and Asp761). Of these, Picroside I exhibited hydrogen bond interactions with NTP entry channel residues (Arg553 and Arg555). The MM-PBSA free energy, RMSD, Rg, PCA, and RMSF analysis suggested that the Picroside I complex showed stable binding interactions with RdRp in the 50 ns simulation. In addition to this, Picroside I revealed its robust and attractive nature toward the target protein, as confirmed by DFT.</div></div><div><h3>Conclusion</h3><div>The results of this study have proposed that Picroside I from AYUSH 64 medicinal plant compounds was the selective binder of catalytic and NTP entry channel residues of SARS-CoV2 RdRp thereby; it may considered as a potential inhibitor of SARS-CoV2 RdRp.</div></div>","PeriodicalId":15150,"journal":{"name":"Journal of Ayurveda and Integrative Medicine","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico exploration of phytocompounds from AYUSH-64 medicinal plants against SARS CoV-2 RNA-dependent RNA polymerase\",\"authors\":\"Srinivasulu Cheemanapalli , Ramanjaneyulu Golla , Sudhakar Pagidi , Seshapani Pantangi\",\"doi\":\"10.1016/j.jaim.2024.101026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The AYUSH 64 formulation helps to treat mild to moderate cases of COVID-19. Although several drugs have been proposed to combat COVID-19, no medication is available for SARS-CoV-2 infection. The RNA-dependent RNA polymerase (RdRp) is the pivotal enzyme of SARS-CoV-2 replication, so it could be considered a better drug target for experimental studies.</div></div><div><h3>Objective</h3><div>The AYUSH-64 formulation plants exhibited multiple therapeutic properties; thus, the present study aims to screen the phytocompounds of these plants against SARS CoV2 RdRp to identify specific compounds that could potentially affect COVID-19 infection.</div></div><div><h3>Materials and methods</h3><div>PatchDock and AutoDock tools were used for docking experiments. MD simulations and Density Functional Theory (DFT) calculations of protein-ligand Picroside-I and Remdesivir complexes were carried out in GROMACS v2019.4 and Gaussian 09 software, respectively.</div></div><div><h3>Results</h3><div>Among the tested<strong>,</strong> five phytocompounds (Picroside I, Oleanolic acid, Arvenin I, II, and III) from AYUSH-64 medicinal plants showed possible binding with RdRp catalytic residues (Ser759, Asp760, and Asp761). Of these, Picroside I exhibited hydrogen bond interactions with NTP entry channel residues (Arg553 and Arg555). The MM-PBSA free energy, RMSD, Rg, PCA, and RMSF analysis suggested that the Picroside I complex showed stable binding interactions with RdRp in the 50 ns simulation. In addition to this, Picroside I revealed its robust and attractive nature toward the target protein, as confirmed by DFT.</div></div><div><h3>Conclusion</h3><div>The results of this study have proposed that Picroside I from AYUSH 64 medicinal plant compounds was the selective binder of catalytic and NTP entry channel residues of SARS-CoV2 RdRp thereby; it may considered as a potential inhibitor of SARS-CoV2 RdRp.</div></div>\",\"PeriodicalId\":15150,\"journal\":{\"name\":\"Journal of Ayurveda and Integrative Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ayurveda and Integrative Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0975947624001414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ayurveda and Integrative Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0975947624001414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
In silico exploration of phytocompounds from AYUSH-64 medicinal plants against SARS CoV-2 RNA-dependent RNA polymerase
Background
The AYUSH 64 formulation helps to treat mild to moderate cases of COVID-19. Although several drugs have been proposed to combat COVID-19, no medication is available for SARS-CoV-2 infection. The RNA-dependent RNA polymerase (RdRp) is the pivotal enzyme of SARS-CoV-2 replication, so it could be considered a better drug target for experimental studies.
Objective
The AYUSH-64 formulation plants exhibited multiple therapeutic properties; thus, the present study aims to screen the phytocompounds of these plants against SARS CoV2 RdRp to identify specific compounds that could potentially affect COVID-19 infection.
Materials and methods
PatchDock and AutoDock tools were used for docking experiments. MD simulations and Density Functional Theory (DFT) calculations of protein-ligand Picroside-I and Remdesivir complexes were carried out in GROMACS v2019.4 and Gaussian 09 software, respectively.
Results
Among the tested, five phytocompounds (Picroside I, Oleanolic acid, Arvenin I, II, and III) from AYUSH-64 medicinal plants showed possible binding with RdRp catalytic residues (Ser759, Asp760, and Asp761). Of these, Picroside I exhibited hydrogen bond interactions with NTP entry channel residues (Arg553 and Arg555). The MM-PBSA free energy, RMSD, Rg, PCA, and RMSF analysis suggested that the Picroside I complex showed stable binding interactions with RdRp in the 50 ns simulation. In addition to this, Picroside I revealed its robust and attractive nature toward the target protein, as confirmed by DFT.
Conclusion
The results of this study have proposed that Picroside I from AYUSH 64 medicinal plant compounds was the selective binder of catalytic and NTP entry channel residues of SARS-CoV2 RdRp thereby; it may considered as a potential inhibitor of SARS-CoV2 RdRp.