{"title":"神经系统疾病中的氨基酰-tRNA 合成酶缺陷。","authors":"Hong Zhang, Jiqiang Ling","doi":"10.1002/iub.2924","DOIUrl":null,"url":null,"abstract":"<p><p>Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes to support protein synthesis in all organisms. Recent studies, empowered by advancements in genome sequencing, have uncovered an increasing number of disease-causing mutations in aaRSs. Monoallelic aaRS mutations typically lead to dominant peripheral neuropathies such as Charcot-Marie-Tooth (CMT) disease, whereas biallelic aaRS mutations often impair the central nervous system (CNS) and cause neurodevelopmental disorders. Here, we review recent progress in the disease onsets, molecular basis, and potential therapies for diseases caused by aaRS mutations, with a focus on biallelic mutations in cytoplasmic aaRSs.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aminoacyl-tRNA synthetase defects in neurological diseases.\",\"authors\":\"Hong Zhang, Jiqiang Ling\",\"doi\":\"10.1002/iub.2924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes to support protein synthesis in all organisms. Recent studies, empowered by advancements in genome sequencing, have uncovered an increasing number of disease-causing mutations in aaRSs. Monoallelic aaRS mutations typically lead to dominant peripheral neuropathies such as Charcot-Marie-Tooth (CMT) disease, whereas biallelic aaRS mutations often impair the central nervous system (CNS) and cause neurodevelopmental disorders. Here, we review recent progress in the disease onsets, molecular basis, and potential therapies for diseases caused by aaRS mutations, with a focus on biallelic mutations in cytoplasmic aaRSs.</p>\",\"PeriodicalId\":14728,\"journal\":{\"name\":\"IUBMB Life\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUBMB Life\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/iub.2924\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUBMB Life","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/iub.2924","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Aminoacyl-tRNA synthetase defects in neurological diseases.
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes to support protein synthesis in all organisms. Recent studies, empowered by advancements in genome sequencing, have uncovered an increasing number of disease-causing mutations in aaRSs. Monoallelic aaRS mutations typically lead to dominant peripheral neuropathies such as Charcot-Marie-Tooth (CMT) disease, whereas biallelic aaRS mutations often impair the central nervous system (CNS) and cause neurodevelopmental disorders. Here, we review recent progress in the disease onsets, molecular basis, and potential therapies for diseases caused by aaRS mutations, with a focus on biallelic mutations in cytoplasmic aaRSs.
期刊介绍:
IUBMB Life is the flagship journal of the International Union of Biochemistry and Molecular Biology and is devoted to the rapid publication of the most novel and significant original research articles, reviews, and hypotheses in the broadly defined fields of biochemistry, molecular biology, cell biology, and molecular medicine.