{"title":"预测脑膜瘤切除术后进行性脑水肿和出血的多参数磁共振成像放射组学模型。","authors":"Kangjian Hu, Guirong Tan, Xueqing Liao, Weiyin Vivian Liu, Wenjing Han, Lingjing Hu, Haihui Jiang, Lijuan Yang, Ming Guo, Yaohong Deng, Zhihua Meng, Xiang Liu","doi":"10.1186/s40644-024-00796-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Postoperative progressive cerebral edema and hemorrhage (PPCEH) are major complications after meningioma resection, yet their preoperative predictive studies are limited. The aim is to develop and validate a multiparametric MRI machine learning model to predict PPCEH after meningioma resection.</p><p><strong>Methods: </strong>This retrospective study included 148 patients with meningioma. A stratified three-fold cross-validation was used to split the dataset into training and validation sets. Radiomics features from the tumor enhancement (TE) and peritumoral brain edema (PTBE) regions were extracted from T1WI, T2WI, and ADC maps. Support vector machine constructed different radiomics models, and logistic regression explored clinical risk factors. Prediction models, integrating clinical and radiomics features, were evaluated using the area under the curve (AUC), visualized in a nomogram.</p><p><strong>Results: </strong>The radiomics model based on TE and PTBE regions (training set mean AUC: 0.85 (95% CI: 0.78-0.93), validation set mean AUC: 0.77 (95%CI: 0.63-0.90)) outperformed the model with TE region solely (training set mean AUC: 0.83 (95% CI: 0.76-0.91), validation set mean AUC: 0.73 (95% CI: 0.58-0.87)). Furthermore, the combined model incorporating radiomics features, and clinical features of preoperative peritumoral edema and tumor boundary adhesion, had the best predictive performance, with AUC values of 0.87 (95% CI: 0.80-0.94) and 0.84 (95% CI: 0.72-0.95) for the training and validation set.</p><p><strong>Conclusions: </strong>We developed a novel model based on clinical characteristics and multiparametric radiomics features derived from TE and PTBE regions, which can accurately and non-invasively predict PPCEH after meningioma resection. Additionally, our findings suggest the crucial role of PTBE radiomics features in understanding the potential mechanisms of PPCEH.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"24 1","pages":"149"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529156/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-parameter MRI radiomics model in predicting postoperative progressive cerebral edema and hemorrhage after resection of meningioma.\",\"authors\":\"Kangjian Hu, Guirong Tan, Xueqing Liao, Weiyin Vivian Liu, Wenjing Han, Lingjing Hu, Haihui Jiang, Lijuan Yang, Ming Guo, Yaohong Deng, Zhihua Meng, Xiang Liu\",\"doi\":\"10.1186/s40644-024-00796-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Postoperative progressive cerebral edema and hemorrhage (PPCEH) are major complications after meningioma resection, yet their preoperative predictive studies are limited. The aim is to develop and validate a multiparametric MRI machine learning model to predict PPCEH after meningioma resection.</p><p><strong>Methods: </strong>This retrospective study included 148 patients with meningioma. A stratified three-fold cross-validation was used to split the dataset into training and validation sets. Radiomics features from the tumor enhancement (TE) and peritumoral brain edema (PTBE) regions were extracted from T1WI, T2WI, and ADC maps. Support vector machine constructed different radiomics models, and logistic regression explored clinical risk factors. Prediction models, integrating clinical and radiomics features, were evaluated using the area under the curve (AUC), visualized in a nomogram.</p><p><strong>Results: </strong>The radiomics model based on TE and PTBE regions (training set mean AUC: 0.85 (95% CI: 0.78-0.93), validation set mean AUC: 0.77 (95%CI: 0.63-0.90)) outperformed the model with TE region solely (training set mean AUC: 0.83 (95% CI: 0.76-0.91), validation set mean AUC: 0.73 (95% CI: 0.58-0.87)). Furthermore, the combined model incorporating radiomics features, and clinical features of preoperative peritumoral edema and tumor boundary adhesion, had the best predictive performance, with AUC values of 0.87 (95% CI: 0.80-0.94) and 0.84 (95% CI: 0.72-0.95) for the training and validation set.</p><p><strong>Conclusions: </strong>We developed a novel model based on clinical characteristics and multiparametric radiomics features derived from TE and PTBE regions, which can accurately and non-invasively predict PPCEH after meningioma resection. Additionally, our findings suggest the crucial role of PTBE radiomics features in understanding the potential mechanisms of PPCEH.</p>\",\"PeriodicalId\":9548,\"journal\":{\"name\":\"Cancer Imaging\",\"volume\":\"24 1\",\"pages\":\"149\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529156/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40644-024-00796-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-024-00796-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Multi-parameter MRI radiomics model in predicting postoperative progressive cerebral edema and hemorrhage after resection of meningioma.
Background: Postoperative progressive cerebral edema and hemorrhage (PPCEH) are major complications after meningioma resection, yet their preoperative predictive studies are limited. The aim is to develop and validate a multiparametric MRI machine learning model to predict PPCEH after meningioma resection.
Methods: This retrospective study included 148 patients with meningioma. A stratified three-fold cross-validation was used to split the dataset into training and validation sets. Radiomics features from the tumor enhancement (TE) and peritumoral brain edema (PTBE) regions were extracted from T1WI, T2WI, and ADC maps. Support vector machine constructed different radiomics models, and logistic regression explored clinical risk factors. Prediction models, integrating clinical and radiomics features, were evaluated using the area under the curve (AUC), visualized in a nomogram.
Results: The radiomics model based on TE and PTBE regions (training set mean AUC: 0.85 (95% CI: 0.78-0.93), validation set mean AUC: 0.77 (95%CI: 0.63-0.90)) outperformed the model with TE region solely (training set mean AUC: 0.83 (95% CI: 0.76-0.91), validation set mean AUC: 0.73 (95% CI: 0.58-0.87)). Furthermore, the combined model incorporating radiomics features, and clinical features of preoperative peritumoral edema and tumor boundary adhesion, had the best predictive performance, with AUC values of 0.87 (95% CI: 0.80-0.94) and 0.84 (95% CI: 0.72-0.95) for the training and validation set.
Conclusions: We developed a novel model based on clinical characteristics and multiparametric radiomics features derived from TE and PTBE regions, which can accurately and non-invasively predict PPCEH after meningioma resection. Additionally, our findings suggest the crucial role of PTBE radiomics features in understanding the potential mechanisms of PPCEH.
Cancer ImagingONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍:
Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology.
The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include:
Breast Imaging
Chest
Complications of treatment
Ear, Nose & Throat
Gastrointestinal
Hepatobiliary & Pancreatic
Imaging biomarkers
Interventional
Lymphoma
Measurement of tumour response
Molecular functional imaging
Musculoskeletal
Neuro oncology
Nuclear Medicine
Paediatric.