Zhongkai Wang, Gang Wang, Haorong Li, Hui Jiang, Yishan Sun, Ge Han, Jinrui Ma, Qiuning Liu, Chen Zhang, Daizhen Zhang, Huabin Zhang, Yongxin Li, Boping Tang, Wen Wang
{"title":"陆地寄居蟹Coenobita brevimanus复杂基因组的染色体组组装。","authors":"Zhongkai Wang, Gang Wang, Haorong Li, Hui Jiang, Yishan Sun, Ge Han, Jinrui Ma, Qiuning Liu, Chen Zhang, Daizhen Zhang, Huabin Zhang, Yongxin Li, Boping Tang, Wen Wang","doi":"10.1038/s41597-024-04031-3","DOIUrl":null,"url":null,"abstract":"<p><p>Land hermit crabs are a group of shell-carrying crabs that have evolved remarkable terrestrial adaptations in behavior, morphology, physiology, and biochemistry. However, the genetic mechanisms underlying these adaptations remain unclear. In addition, usually it is very difficult to get good genome assemblies for crustaceans. In this study, we managed to assemble the first chromosome-level genome for a land hermit crab (Coenobita brevimanus) with careful manual curation. The final assembly spans 4.74 Gb, with the contig N50 of 1.75 Mb and scaffold N50 of 42.95 Mb, encompassing 117 chromosomes that account for 96.54% of the genome. The evaluations including genome BUSCO (95.26%), Merqury qv (35.88) and the mapping ratio of pair-end short reads (99.48%) showed the high-continuity of C. brevimanus genome assembly, making it the genome with the highest quality in crustaceans with genome size bigger than 3 Gb. The availability of this chromosome-scale genome of crustaceans represents a valuable resource for the land hermit crab, which represents an independent water-to-land transition evolutionary event in the animal kingdom.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1190"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531507/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chromosome-level assembly for the complex genome of land hermit crab Coenobita brevimanus.\",\"authors\":\"Zhongkai Wang, Gang Wang, Haorong Li, Hui Jiang, Yishan Sun, Ge Han, Jinrui Ma, Qiuning Liu, Chen Zhang, Daizhen Zhang, Huabin Zhang, Yongxin Li, Boping Tang, Wen Wang\",\"doi\":\"10.1038/s41597-024-04031-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Land hermit crabs are a group of shell-carrying crabs that have evolved remarkable terrestrial adaptations in behavior, morphology, physiology, and biochemistry. However, the genetic mechanisms underlying these adaptations remain unclear. In addition, usually it is very difficult to get good genome assemblies for crustaceans. In this study, we managed to assemble the first chromosome-level genome for a land hermit crab (Coenobita brevimanus) with careful manual curation. The final assembly spans 4.74 Gb, with the contig N50 of 1.75 Mb and scaffold N50 of 42.95 Mb, encompassing 117 chromosomes that account for 96.54% of the genome. The evaluations including genome BUSCO (95.26%), Merqury qv (35.88) and the mapping ratio of pair-end short reads (99.48%) showed the high-continuity of C. brevimanus genome assembly, making it the genome with the highest quality in crustaceans with genome size bigger than 3 Gb. The availability of this chromosome-scale genome of crustaceans represents a valuable resource for the land hermit crab, which represents an independent water-to-land transition evolutionary event in the animal kingdom.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1190\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04031-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04031-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Chromosome-level assembly for the complex genome of land hermit crab Coenobita brevimanus.
Land hermit crabs are a group of shell-carrying crabs that have evolved remarkable terrestrial adaptations in behavior, morphology, physiology, and biochemistry. However, the genetic mechanisms underlying these adaptations remain unclear. In addition, usually it is very difficult to get good genome assemblies for crustaceans. In this study, we managed to assemble the first chromosome-level genome for a land hermit crab (Coenobita brevimanus) with careful manual curation. The final assembly spans 4.74 Gb, with the contig N50 of 1.75 Mb and scaffold N50 of 42.95 Mb, encompassing 117 chromosomes that account for 96.54% of the genome. The evaluations including genome BUSCO (95.26%), Merqury qv (35.88) and the mapping ratio of pair-end short reads (99.48%) showed the high-continuity of C. brevimanus genome assembly, making it the genome with the highest quality in crustaceans with genome size bigger than 3 Gb. The availability of this chromosome-scale genome of crustaceans represents a valuable resource for the land hermit crab, which represents an independent water-to-land transition evolutionary event in the animal kingdom.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.