抗生素对新生儿的影响:随机对照试验。

IF 3 4区 医学 Q2 MICROBIOLOGY
J Lozar Krivec, P Bratina, A Valcl, K Lozar Manfreda, A Petrovčič, E Benedik, T Obermajer, B Bogovič Matijašić, U Šetina, M Rupnik, A Mahnič, D Paro-Panjan
{"title":"抗生素对新生儿的影响:随机对照试验。","authors":"J Lozar Krivec, P Bratina, A Valcl, K Lozar Manfreda, A Petrovčič, E Benedik, T Obermajer, B Bogovič Matijašić, U Šetina, M Rupnik, A Mahnič, D Paro-Panjan","doi":"10.1163/18762891-bja00049","DOIUrl":null,"url":null,"abstract":"<p><p>Perinatal antibiotic exposure potentially leads to gut microbiota dysbiosis, which is associated with functional gastrointestinal disorders (FGIDs). We aimed to investigate the effects of Limosilactobacillus reuteri DSM 17938 supplementation on the development of FGIDs, crying and sleep duration, and the gut microbial composition in infants exposed to antibiotics during the neonatal period. In this randomised, double-blind, placebo-controlled study, we included 89 term neonates treated with antibiotics. Neonates received the study product for six weeks. FGIDs, assessed by the Infant Gastrointestinal Symptom Questionnaire, crying and sleep duration were assessed at four and eight weeks, and six months after enrolment. Faecal samples were collected six weeks and twelve months after enrolment. The gut microbial community composition was analysed using 16S amplicon sequencing and qPCR. The proportion of infants with FGIDs was greater in the control group, although the difference between the groups was significant only six months after enrolment. At all time points, the probiotic group presented a longer sleep duration and shorter crying time than the control group, but the difference was not statistically significant. Probiotic consumption had no significant effect on the gut microbiota composition except for increased L. reuteri DSM 17938 abundance in the probiotic group at six weeks after enrolment. At specific time points after supplementation with L. reuteri DSM 17938, a reduction in the prevalence of FGIDs was observed in the probiotic group. However, no observable effect on the gut microbiota was detected during the intervention. We believe that probiotic supplementation in neonates during and after antibiotic treatment to minimise the negative effects of antibiotics on gut function during this vulnerable period of human development warrants further investigation. The trial is registered at ClinicalTrials.gov (NCT02865564).</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-13"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Limosilactobacillus reuteri DSM 17938 in neonates exposed to antibiotics: a randomised controlled trial.\",\"authors\":\"J Lozar Krivec, P Bratina, A Valcl, K Lozar Manfreda, A Petrovčič, E Benedik, T Obermajer, B Bogovič Matijašić, U Šetina, M Rupnik, A Mahnič, D Paro-Panjan\",\"doi\":\"10.1163/18762891-bja00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perinatal antibiotic exposure potentially leads to gut microbiota dysbiosis, which is associated with functional gastrointestinal disorders (FGIDs). We aimed to investigate the effects of Limosilactobacillus reuteri DSM 17938 supplementation on the development of FGIDs, crying and sleep duration, and the gut microbial composition in infants exposed to antibiotics during the neonatal period. In this randomised, double-blind, placebo-controlled study, we included 89 term neonates treated with antibiotics. Neonates received the study product for six weeks. FGIDs, assessed by the Infant Gastrointestinal Symptom Questionnaire, crying and sleep duration were assessed at four and eight weeks, and six months after enrolment. Faecal samples were collected six weeks and twelve months after enrolment. The gut microbial community composition was analysed using 16S amplicon sequencing and qPCR. The proportion of infants with FGIDs was greater in the control group, although the difference between the groups was significant only six months after enrolment. At all time points, the probiotic group presented a longer sleep duration and shorter crying time than the control group, but the difference was not statistically significant. Probiotic consumption had no significant effect on the gut microbiota composition except for increased L. reuteri DSM 17938 abundance in the probiotic group at six weeks after enrolment. At specific time points after supplementation with L. reuteri DSM 17938, a reduction in the prevalence of FGIDs was observed in the probiotic group. However, no observable effect on the gut microbiota was detected during the intervention. We believe that probiotic supplementation in neonates during and after antibiotic treatment to minimise the negative effects of antibiotics on gut function during this vulnerable period of human development warrants further investigation. The trial is registered at ClinicalTrials.gov (NCT02865564).</p>\",\"PeriodicalId\":8834,\"journal\":{\"name\":\"Beneficial microbes\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beneficial microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1163/18762891-bja00049\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00049","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

围产期抗生素暴露可能导致肠道微生物菌群失调,而肠道微生物菌群失调与功能性胃肠道疾病(FGIDs)有关。我们的目的是研究在新生儿期接触抗生素的婴儿中补充柠檬酸嗜酸乳杆菌(DSM 17938)对功能性胃肠失调症的发展、哭闹和睡眠时间以及肠道微生物组成的影响。在这项随机、双盲、安慰剂对照研究中,我们纳入了 89 名接受抗生素治疗的足月新生儿。新生儿接受了为期六周的研究产品治疗。入组后 4 周、8 周和 6 个月时,通过婴儿胃肠道症状问卷评估 FGID、哭闹和睡眠时间。入学后六周和十二个月收集粪便样本。采用 16S 扩增子测序和 qPCR 分析了肠道微生物群落的组成。对照组患 FGID 的婴儿比例更高,但两组间的差异仅在入学六个月后才显著。在所有时间点上,益生菌组都比对照组睡眠时间更长、哭闹时间更短,但差异在统计学上并不显著。服用益生菌对肠道微生物群的组成没有明显影响,只是在入学六周后,益生菌组中的 L. reuteri DSM 17938 丰度有所增加。在补充 L. reuteri DSM 17938 后的特定时间点,观察到益生菌组的 FGID 发病率有所下降。然而,在干预过程中并未发现对肠道微生物群有明显的影响。我们认为,在抗生素治疗期间和治疗后为新生儿补充益生菌,以尽量减少抗生素在人体发育的这一脆弱时期对肠道功能的负面影响,值得进一步研究。该试验已在 ClinicalTrials.gov 上注册(NCT02865564)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Limosilactobacillus reuteri DSM 17938 in neonates exposed to antibiotics: a randomised controlled trial.

Perinatal antibiotic exposure potentially leads to gut microbiota dysbiosis, which is associated with functional gastrointestinal disorders (FGIDs). We aimed to investigate the effects of Limosilactobacillus reuteri DSM 17938 supplementation on the development of FGIDs, crying and sleep duration, and the gut microbial composition in infants exposed to antibiotics during the neonatal period. In this randomised, double-blind, placebo-controlled study, we included 89 term neonates treated with antibiotics. Neonates received the study product for six weeks. FGIDs, assessed by the Infant Gastrointestinal Symptom Questionnaire, crying and sleep duration were assessed at four and eight weeks, and six months after enrolment. Faecal samples were collected six weeks and twelve months after enrolment. The gut microbial community composition was analysed using 16S amplicon sequencing and qPCR. The proportion of infants with FGIDs was greater in the control group, although the difference between the groups was significant only six months after enrolment. At all time points, the probiotic group presented a longer sleep duration and shorter crying time than the control group, but the difference was not statistically significant. Probiotic consumption had no significant effect on the gut microbiota composition except for increased L. reuteri DSM 17938 abundance in the probiotic group at six weeks after enrolment. At specific time points after supplementation with L. reuteri DSM 17938, a reduction in the prevalence of FGIDs was observed in the probiotic group. However, no observable effect on the gut microbiota was detected during the intervention. We believe that probiotic supplementation in neonates during and after antibiotic treatment to minimise the negative effects of antibiotics on gut function during this vulnerable period of human development warrants further investigation. The trial is registered at ClinicalTrials.gov (NCT02865564).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Beneficial microbes
Beneficial microbes MICROBIOLOGY-NUTRITION & DIETETICS
CiteScore
7.90
自引率
1.90%
发文量
53
审稿时长
>12 weeks
期刊介绍: Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators. The journal will have five major sections: * Food, nutrition and health * Animal nutrition * Processing and application * Regulatory & safety aspects * Medical & health applications In these sections, topics dealt with by Beneficial Microbes include: * Worldwide safety and regulatory issues * Human and animal nutrition and health effects * Latest discoveries in mechanistic studies and screening methods to unravel mode of action * Host physiology related to allergy, inflammation, obesity, etc. * Trends in application of (meta)genomics, proteomics and metabolomics * New developments in how processing optimizes pro- & prebiotics for application * Bacterial physiology related to health benefits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信