Taohong He , Jian Kang , Xiao Tang , Yuqi Wu , Liangliang Hao
{"title":"过表达 MCL1 可通过调节杯突减少肠易激综合征:筛选与验证","authors":"Taohong He , Jian Kang , Xiao Tang , Yuqi Wu , Liangliang Hao","doi":"10.1016/j.bbrc.2024.150926","DOIUrl":null,"url":null,"abstract":"<div><div>Irritable bowel syndrome (IBS) is a type of chronic bowel disorder with a poorly understood pathophysiology. Recently, the imbalance of copper has been reported to influence the progression of IBS, suggesting cuproptosis, a new type of copper-induced cell death, may play a role in IBS. This study found 17 cuproptosis-related differentially expressed genes in IBS through bioinformatic analysis. Six hub genes were identified after the protein-protein interaction network analysis, namely myeloid cell leukemia 1 (<em>MCL1</em>), epidermal growth factor receptor 2, cadherin-associated protein beta 1, solute carrier family 25 members 37, solute carrier family 39 members 14, and six transmembrane epithelial antigens of the prostate 3. We selected <em>MCL1</em> for further verification. Human normal colon epithelial cell line (NCM460) was used to construct models of IBS or cuproptosis <em>in vitro</em> by lipopolysaccharide (LPS) or LPS combined with copper (II) chloride (CuCl<sub>2</sub>)<em>.</em> We observed that overexpression of <em>MCL1</em> promoted cell viability and proliferation ability, and inhibited the secretion of inflammatory factors and expression of Bax and caspase-3 of NCM460 cells treated with LPS or LPS combined with CuCl<sub>2</sub>. In addition, up-regulated <em>MCL1</em> significantly suppressed the protein levels of ferredoxin 1 and lipoyl synthase, two key regulators of cuproptosis. In conclusion, our study demonstrates that cuproptosis is involved in IBS and identifies a cuproptosis-related gene, <em>MCL1</em>, that helps alleviate IBS by promoting cell growth, reducing inflammation, and suppressing cuproptosis, making it a promising therapeutic target in IBS.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overexpression of MCL1 attenuates irritable bowel syndrome by regulating cuproptosis: Screening and validation\",\"authors\":\"Taohong He , Jian Kang , Xiao Tang , Yuqi Wu , Liangliang Hao\",\"doi\":\"10.1016/j.bbrc.2024.150926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Irritable bowel syndrome (IBS) is a type of chronic bowel disorder with a poorly understood pathophysiology. Recently, the imbalance of copper has been reported to influence the progression of IBS, suggesting cuproptosis, a new type of copper-induced cell death, may play a role in IBS. This study found 17 cuproptosis-related differentially expressed genes in IBS through bioinformatic analysis. Six hub genes were identified after the protein-protein interaction network analysis, namely myeloid cell leukemia 1 (<em>MCL1</em>), epidermal growth factor receptor 2, cadherin-associated protein beta 1, solute carrier family 25 members 37, solute carrier family 39 members 14, and six transmembrane epithelial antigens of the prostate 3. We selected <em>MCL1</em> for further verification. Human normal colon epithelial cell line (NCM460) was used to construct models of IBS or cuproptosis <em>in vitro</em> by lipopolysaccharide (LPS) or LPS combined with copper (II) chloride (CuCl<sub>2</sub>)<em>.</em> We observed that overexpression of <em>MCL1</em> promoted cell viability and proliferation ability, and inhibited the secretion of inflammatory factors and expression of Bax and caspase-3 of NCM460 cells treated with LPS or LPS combined with CuCl<sub>2</sub>. In addition, up-regulated <em>MCL1</em> significantly suppressed the protein levels of ferredoxin 1 and lipoyl synthase, two key regulators of cuproptosis. In conclusion, our study demonstrates that cuproptosis is involved in IBS and identifies a cuproptosis-related gene, <em>MCL1</em>, that helps alleviate IBS by promoting cell growth, reducing inflammation, and suppressing cuproptosis, making it a promising therapeutic target in IBS.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24014621\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24014621","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Overexpression of MCL1 attenuates irritable bowel syndrome by regulating cuproptosis: Screening and validation
Irritable bowel syndrome (IBS) is a type of chronic bowel disorder with a poorly understood pathophysiology. Recently, the imbalance of copper has been reported to influence the progression of IBS, suggesting cuproptosis, a new type of copper-induced cell death, may play a role in IBS. This study found 17 cuproptosis-related differentially expressed genes in IBS through bioinformatic analysis. Six hub genes were identified after the protein-protein interaction network analysis, namely myeloid cell leukemia 1 (MCL1), epidermal growth factor receptor 2, cadherin-associated protein beta 1, solute carrier family 25 members 37, solute carrier family 39 members 14, and six transmembrane epithelial antigens of the prostate 3. We selected MCL1 for further verification. Human normal colon epithelial cell line (NCM460) was used to construct models of IBS or cuproptosis in vitro by lipopolysaccharide (LPS) or LPS combined with copper (II) chloride (CuCl2). We observed that overexpression of MCL1 promoted cell viability and proliferation ability, and inhibited the secretion of inflammatory factors and expression of Bax and caspase-3 of NCM460 cells treated with LPS or LPS combined with CuCl2. In addition, up-regulated MCL1 significantly suppressed the protein levels of ferredoxin 1 and lipoyl synthase, two key regulators of cuproptosis. In conclusion, our study demonstrates that cuproptosis is involved in IBS and identifies a cuproptosis-related gene, MCL1, that helps alleviate IBS by promoting cell growth, reducing inflammation, and suppressing cuproptosis, making it a promising therapeutic target in IBS.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics