Xuedong Bai, Mengxiao Xu, Shixin Jin, Edmond H N Pow, Yanning Chen, James K H Tsoi
{"title":"使用 222 纳米 UV-C 光子在氧化锆上直接进行彩色印刷。","authors":"Xuedong Bai, Mengxiao Xu, Shixin Jin, Edmond H N Pow, Yanning Chen, James K H Tsoi","doi":"10.1016/j.dental.2024.10.019","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To proof the feasibility of direct colour printing on 3Y-TZP using 222 nm UV-C through investigating the degree and durability of the colour changes, and testifying whether surface, mechanical and biological properties are influenced by the treatment.</p><p><strong>Methods: </strong>222 nm UV-C light (Irradiance: 1.870 mW/cm<sup>2</sup>) was used to treat 3Y-TZP for durations from 15 min to 24 h. ΔE*, TP, crystalline structure, surface morphology, S<sub>a</sub>, BFS and biological activities were investigated before and after irradiation. SPSS 28.0 was used for statistical analysis (α = 0.05).</p><p><strong>Results: </strong>222 nm UV-C irradiation was capable to shade white 3Y-TZP into tooth colours. With the increase of ΔE*, TP decreased, such that the longer the irradiation time, the higher the ΔE* (logarithmic relationship) and lower the TP. Despite the induced optical changes being prone to fade, the process can be predicted by inversely proportional relationships between ΔE*, TP and the testing points. The treated surface exhibited enhanced hydrophilicity, while the recovery phenomenon was observed. Other properties were not altered by the treatment.</p><p><strong>Significance: </strong>This is the seminal study demonstrating the feasibility of direct colour printing on 3Y-TZP using 222 nm UV-C. The new relationship between the colour centre and E<sub>g</sub> of 3Y-TZP was established, whereas the induced optical changes were stabilised after a certain period and were highly predictable by controlling the irradiation periods. The irradiation was only correlated to the electron excitation and oxygen vacancies, and would not lead to any changes of other properties. A simple, safe and promising approach to achieve satisfactory colours on 3Y-TZP in clinical practice can be developed.</p>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct colour printing on zirconia using 222 nm UV-C photons.\",\"authors\":\"Xuedong Bai, Mengxiao Xu, Shixin Jin, Edmond H N Pow, Yanning Chen, James K H Tsoi\",\"doi\":\"10.1016/j.dental.2024.10.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To proof the feasibility of direct colour printing on 3Y-TZP using 222 nm UV-C through investigating the degree and durability of the colour changes, and testifying whether surface, mechanical and biological properties are influenced by the treatment.</p><p><strong>Methods: </strong>222 nm UV-C light (Irradiance: 1.870 mW/cm<sup>2</sup>) was used to treat 3Y-TZP for durations from 15 min to 24 h. ΔE*, TP, crystalline structure, surface morphology, S<sub>a</sub>, BFS and biological activities were investigated before and after irradiation. SPSS 28.0 was used for statistical analysis (α = 0.05).</p><p><strong>Results: </strong>222 nm UV-C irradiation was capable to shade white 3Y-TZP into tooth colours. With the increase of ΔE*, TP decreased, such that the longer the irradiation time, the higher the ΔE* (logarithmic relationship) and lower the TP. Despite the induced optical changes being prone to fade, the process can be predicted by inversely proportional relationships between ΔE*, TP and the testing points. The treated surface exhibited enhanced hydrophilicity, while the recovery phenomenon was observed. Other properties were not altered by the treatment.</p><p><strong>Significance: </strong>This is the seminal study demonstrating the feasibility of direct colour printing on 3Y-TZP using 222 nm UV-C. The new relationship between the colour centre and E<sub>g</sub> of 3Y-TZP was established, whereas the induced optical changes were stabilised after a certain period and were highly predictable by controlling the irradiation periods. The irradiation was only correlated to the electron excitation and oxygen vacancies, and would not lead to any changes of other properties. A simple, safe and promising approach to achieve satisfactory colours on 3Y-TZP in clinical practice can be developed.</p>\",\"PeriodicalId\":298,\"journal\":{\"name\":\"Dental Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dental Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dental.2024.10.019\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dental.2024.10.019","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Direct colour printing on zirconia using 222 nm UV-C photons.
Objectives: To proof the feasibility of direct colour printing on 3Y-TZP using 222 nm UV-C through investigating the degree and durability of the colour changes, and testifying whether surface, mechanical and biological properties are influenced by the treatment.
Methods: 222 nm UV-C light (Irradiance: 1.870 mW/cm2) was used to treat 3Y-TZP for durations from 15 min to 24 h. ΔE*, TP, crystalline structure, surface morphology, Sa, BFS and biological activities were investigated before and after irradiation. SPSS 28.0 was used for statistical analysis (α = 0.05).
Results: 222 nm UV-C irradiation was capable to shade white 3Y-TZP into tooth colours. With the increase of ΔE*, TP decreased, such that the longer the irradiation time, the higher the ΔE* (logarithmic relationship) and lower the TP. Despite the induced optical changes being prone to fade, the process can be predicted by inversely proportional relationships between ΔE*, TP and the testing points. The treated surface exhibited enhanced hydrophilicity, while the recovery phenomenon was observed. Other properties were not altered by the treatment.
Significance: This is the seminal study demonstrating the feasibility of direct colour printing on 3Y-TZP using 222 nm UV-C. The new relationship between the colour centre and Eg of 3Y-TZP was established, whereas the induced optical changes were stabilised after a certain period and were highly predictable by controlling the irradiation periods. The irradiation was only correlated to the electron excitation and oxygen vacancies, and would not lead to any changes of other properties. A simple, safe and promising approach to achieve satisfactory colours on 3Y-TZP in clinical practice can be developed.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.