Cintia Anna Nagy , Flóra Hann , Bianka Brezóczki , Kinga Farkas , Teodóra Vékony , Orsolya Pesthy , Dezső Németh
{"title":"成人自闭症患者和具有自闭症特征的神经类型患者的完整超快速记忆巩固。","authors":"Cintia Anna Nagy , Flóra Hann , Bianka Brezóczki , Kinga Farkas , Teodóra Vékony , Orsolya Pesthy , Dezső Németh","doi":"10.1016/j.brainres.2024.149299","DOIUrl":null,"url":null,"abstract":"<div><div>The processes of learning and memory consolidation are closely interlinked. Therefore, to uncover statistical learning in autism spectrum disorder (ASD), an in-depth examination of memory consolidation is essential. Studies of the last five years have revealed that learning can take place not only during practice but also during micro rest (<1 min) between practice blocks, termed micro offline gains. The concept of micro offline gains refers to performance improvements during short rest periods interspersed with practice, rather than during practice itself. This phenomenon is crucial for the acquisition and consolidation of motor skills and has been observed across various learning contexts. Numerous studies on learning in autism have identified intact learning but there has been no investigation into this fundamental aspect of memory consolidation in autistic individuals to date. We conducted two studies with two different samples: 1) neurotypical adults with distinct levels of autistic traits (<em>N</em> = 166) and 2) ASD-diagnosed adults (<em>N<sub>ASD</sub></em> = 22, <em>N<sub>NTP</sub></em> = 20). Participants performed a well-established probabilistic learning task, allowing us to measure two learning processes separately in the same experimental design: statistical learning (i.e., learning probability-based regularities) and visuomotor performance (i.e., speed-up regardless of probabilities). Here we show considerable individual differences in offline (between blocks) changes during statistical learning and between-blocks improvement during visuomotor performance. However, cumulative evidence from individual studies suggests that the degree of autistic traits and ASD status are not associated with micro offline gains, indicating that, like statistical learning, rapid memory consolidation is intact.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1847 ","pages":"Article 149299"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intact ultrafast memory consolidation in adults with autism and neurotypicals with autism traits\",\"authors\":\"Cintia Anna Nagy , Flóra Hann , Bianka Brezóczki , Kinga Farkas , Teodóra Vékony , Orsolya Pesthy , Dezső Németh\",\"doi\":\"10.1016/j.brainres.2024.149299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The processes of learning and memory consolidation are closely interlinked. Therefore, to uncover statistical learning in autism spectrum disorder (ASD), an in-depth examination of memory consolidation is essential. Studies of the last five years have revealed that learning can take place not only during practice but also during micro rest (<1 min) between practice blocks, termed micro offline gains. The concept of micro offline gains refers to performance improvements during short rest periods interspersed with practice, rather than during practice itself. This phenomenon is crucial for the acquisition and consolidation of motor skills and has been observed across various learning contexts. Numerous studies on learning in autism have identified intact learning but there has been no investigation into this fundamental aspect of memory consolidation in autistic individuals to date. We conducted two studies with two different samples: 1) neurotypical adults with distinct levels of autistic traits (<em>N</em> = 166) and 2) ASD-diagnosed adults (<em>N<sub>ASD</sub></em> = 22, <em>N<sub>NTP</sub></em> = 20). Participants performed a well-established probabilistic learning task, allowing us to measure two learning processes separately in the same experimental design: statistical learning (i.e., learning probability-based regularities) and visuomotor performance (i.e., speed-up regardless of probabilities). Here we show considerable individual differences in offline (between blocks) changes during statistical learning and between-blocks improvement during visuomotor performance. However, cumulative evidence from individual studies suggests that the degree of autistic traits and ASD status are not associated with micro offline gains, indicating that, like statistical learning, rapid memory consolidation is intact.</div></div>\",\"PeriodicalId\":9083,\"journal\":{\"name\":\"Brain Research\",\"volume\":\"1847 \",\"pages\":\"Article 149299\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006899324005535\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899324005535","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Intact ultrafast memory consolidation in adults with autism and neurotypicals with autism traits
The processes of learning and memory consolidation are closely interlinked. Therefore, to uncover statistical learning in autism spectrum disorder (ASD), an in-depth examination of memory consolidation is essential. Studies of the last five years have revealed that learning can take place not only during practice but also during micro rest (<1 min) between practice blocks, termed micro offline gains. The concept of micro offline gains refers to performance improvements during short rest periods interspersed with practice, rather than during practice itself. This phenomenon is crucial for the acquisition and consolidation of motor skills and has been observed across various learning contexts. Numerous studies on learning in autism have identified intact learning but there has been no investigation into this fundamental aspect of memory consolidation in autistic individuals to date. We conducted two studies with two different samples: 1) neurotypical adults with distinct levels of autistic traits (N = 166) and 2) ASD-diagnosed adults (NASD = 22, NNTP = 20). Participants performed a well-established probabilistic learning task, allowing us to measure two learning processes separately in the same experimental design: statistical learning (i.e., learning probability-based regularities) and visuomotor performance (i.e., speed-up regardless of probabilities). Here we show considerable individual differences in offline (between blocks) changes during statistical learning and between-blocks improvement during visuomotor performance. However, cumulative evidence from individual studies suggests that the degree of autistic traits and ASD status are not associated with micro offline gains, indicating that, like statistical learning, rapid memory consolidation is intact.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.