Peter T Euclide, Heiner Kuhl, Chris C Wilson, Kim T Scribner, Loren M Miller, Wendylee Stott, Wesley A Larson
{"title":"人类对五大湖瓦勒耶鱼(Walleye Sander vitreus)结构、多样性和当地适应性的影响。","authors":"Peter T Euclide, Heiner Kuhl, Chris C Wilson, Kim T Scribner, Loren M Miller, Wendylee Stott, Wesley A Larson","doi":"10.1111/mec.17558","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial propagation and wild release may influence the genetic integrity of wild populations. This practice has been prevalent in fisheries for centuries and is often termed 'stocking'. In the Laurentian Great Lakes (Great Lakes here-on), walleye populations faced declines from the 1950s to the 1970s, prompting extensive stocking efforts for restoration. By the mid-2010s, walleye populations showed signs of recovery, but the genetic legacy of stocking on population structure at the genomic level remains unclear. Using a dataset of 45,600 genome-aligned SNP loci genotyped in 1075 walleye individuals, we investigated the genetic impacts of over 50 years of stocking across the Great Lakes. Population structure was associated with both natural geographic barriers and stocking from non-native sources. Admixture between Lake Erie walleye and walleye from the re-populated Tittabawassee River indicate that stocking may have re-distributed putatively adaptive alleles around the Great Lakes. Genome scans identified F<sub>ST</sub> outliers and evidence of selective sweeps, indicating local adaptation of spawning populations is likely. Notably, one genomic region showed strong differentiation between Muskegon River and walleye from the Tittabawassee River, which was re-populated by Muskegon strain walleye, suggesting admixture and selection both impact the observed genetic diversity. Overall, our study underscores how artificial propagation and translocations can significantly alter the evolutionary trajectory of populations. The findings highlight the complex interplay between stocking practices and population genetic diversity, emphasising the need for careful management strategies to preserve the genetic integrity of wild populations amidst conservation efforts.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17558"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Impacts on Great Lakes Walleye Sander vitreus Structure, Diversity and Local Adaptation.\",\"authors\":\"Peter T Euclide, Heiner Kuhl, Chris C Wilson, Kim T Scribner, Loren M Miller, Wendylee Stott, Wesley A Larson\",\"doi\":\"10.1111/mec.17558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial propagation and wild release may influence the genetic integrity of wild populations. This practice has been prevalent in fisheries for centuries and is often termed 'stocking'. In the Laurentian Great Lakes (Great Lakes here-on), walleye populations faced declines from the 1950s to the 1970s, prompting extensive stocking efforts for restoration. By the mid-2010s, walleye populations showed signs of recovery, but the genetic legacy of stocking on population structure at the genomic level remains unclear. Using a dataset of 45,600 genome-aligned SNP loci genotyped in 1075 walleye individuals, we investigated the genetic impacts of over 50 years of stocking across the Great Lakes. Population structure was associated with both natural geographic barriers and stocking from non-native sources. Admixture between Lake Erie walleye and walleye from the re-populated Tittabawassee River indicate that stocking may have re-distributed putatively adaptive alleles around the Great Lakes. Genome scans identified F<sub>ST</sub> outliers and evidence of selective sweeps, indicating local adaptation of spawning populations is likely. Notably, one genomic region showed strong differentiation between Muskegon River and walleye from the Tittabawassee River, which was re-populated by Muskegon strain walleye, suggesting admixture and selection both impact the observed genetic diversity. Overall, our study underscores how artificial propagation and translocations can significantly alter the evolutionary trajectory of populations. The findings highlight the complex interplay between stocking practices and population genetic diversity, emphasising the need for careful management strategies to preserve the genetic integrity of wild populations amidst conservation efforts.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17558\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17558\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17558","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Human Impacts on Great Lakes Walleye Sander vitreus Structure, Diversity and Local Adaptation.
Artificial propagation and wild release may influence the genetic integrity of wild populations. This practice has been prevalent in fisheries for centuries and is often termed 'stocking'. In the Laurentian Great Lakes (Great Lakes here-on), walleye populations faced declines from the 1950s to the 1970s, prompting extensive stocking efforts for restoration. By the mid-2010s, walleye populations showed signs of recovery, but the genetic legacy of stocking on population structure at the genomic level remains unclear. Using a dataset of 45,600 genome-aligned SNP loci genotyped in 1075 walleye individuals, we investigated the genetic impacts of over 50 years of stocking across the Great Lakes. Population structure was associated with both natural geographic barriers and stocking from non-native sources. Admixture between Lake Erie walleye and walleye from the re-populated Tittabawassee River indicate that stocking may have re-distributed putatively adaptive alleles around the Great Lakes. Genome scans identified FST outliers and evidence of selective sweeps, indicating local adaptation of spawning populations is likely. Notably, one genomic region showed strong differentiation between Muskegon River and walleye from the Tittabawassee River, which was re-populated by Muskegon strain walleye, suggesting admixture and selection both impact the observed genetic diversity. Overall, our study underscores how artificial propagation and translocations can significantly alter the evolutionary trajectory of populations. The findings highlight the complex interplay between stocking practices and population genetic diversity, emphasising the need for careful management strategies to preserve the genetic integrity of wild populations amidst conservation efforts.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms