非血红蛋白 Fe(II)/2-Oxoglutarate 依赖性组蛋白赖氨酸去甲基化酶 KDM4A 在不同甲基化组蛋白 H3 肽中的催化起源

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Chemistry - A European Journal Pub Date : 2025-01-14 Epub Date: 2024-11-18 DOI:10.1002/chem.202403989
Sudheesh Devadas, Midhun George Thomas, Simahudeen Bathir Jaber Sathik Rifayee, Bhargav Varada, Walter White, Ethan Sommer, Kylin Campbell, Christopher J Schofield, Christo Z Christov
{"title":"非血红蛋白 Fe(II)/2-Oxoglutarate 依赖性组蛋白赖氨酸去甲基化酶 KDM4A 在不同甲基化组蛋白 H3 肽中的催化起源","authors":"Sudheesh Devadas, Midhun George Thomas, Simahudeen Bathir Jaber Sathik Rifayee, Bhargav Varada, Walter White, Ethan Sommer, Kylin Campbell, Christopher J Schofield, Christo Z Christov","doi":"10.1002/chem.202403989","DOIUrl":null,"url":null,"abstract":"<p><p>Histone lysine demethylase 4 A (KDM4A), a non-heme Fe(II)/2-oxoglutarate (2OG) dependent oxygenase that catalyzes the demethylation of tri-methylated lysine residues at the 9, 27, and 36 positions of histone H3 (H3 K9me3, H3 K27me3, and H3 K36me3). These methylated residues show contrasting transcriptional roles; therefore, understanding KDM4A's catalytic mechanisms with these substrates is essential to explain the factors that control the different sequence-dependent demethylations. In this study, we use molecular dynamics (MD)-based combined quantum mechanics/molecular mechanics (QM/MM) methods to investigate determinants of KDM4A catalysis with H3 K9me3, H3 K27me3 and H3 K36me3 substrates. In KDM4A-H3<sub>(5-14)</sub>K9me3 and KDM4A-H3<sub>(23-32)</sub>K27me3 ferryl complexes, the O-H distance positively correlates with the activation barrier of the rate-limiting step, however in the KDM4A-H3<sub>(32-41)</sub>K36me3, no direct one-to-one relationship was found implying that the synergistic effects between the geometric parameters, second sphere interactions and the intrinsic electric field contribute for the effective catalysis for this substrate. The intrinsic electric field along the Fe-O bond changes between the three complexes and shows a positive correlation with the HAT activation barrier, suggesting that modulating electric field can be used for fine engineering KDM catalysis with a specific substrate. The results reveal how KDM4A uses a combination of strategies to enable near equally efficient demethylation of different H3Kme3 residues.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202403989"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origins of Catalysis in Non-Heme Fe(II)/2-Oxoglutarate-Dependent Histone Lysine Demethylase KDM4A with Differently Methylated Histone H3 Peptides.\",\"authors\":\"Sudheesh Devadas, Midhun George Thomas, Simahudeen Bathir Jaber Sathik Rifayee, Bhargav Varada, Walter White, Ethan Sommer, Kylin Campbell, Christopher J Schofield, Christo Z Christov\",\"doi\":\"10.1002/chem.202403989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histone lysine demethylase 4 A (KDM4A), a non-heme Fe(II)/2-oxoglutarate (2OG) dependent oxygenase that catalyzes the demethylation of tri-methylated lysine residues at the 9, 27, and 36 positions of histone H3 (H3 K9me3, H3 K27me3, and H3 K36me3). These methylated residues show contrasting transcriptional roles; therefore, understanding KDM4A's catalytic mechanisms with these substrates is essential to explain the factors that control the different sequence-dependent demethylations. In this study, we use molecular dynamics (MD)-based combined quantum mechanics/molecular mechanics (QM/MM) methods to investigate determinants of KDM4A catalysis with H3 K9me3, H3 K27me3 and H3 K36me3 substrates. In KDM4A-H3<sub>(5-14)</sub>K9me3 and KDM4A-H3<sub>(23-32)</sub>K27me3 ferryl complexes, the O-H distance positively correlates with the activation barrier of the rate-limiting step, however in the KDM4A-H3<sub>(32-41)</sub>K36me3, no direct one-to-one relationship was found implying that the synergistic effects between the geometric parameters, second sphere interactions and the intrinsic electric field contribute for the effective catalysis for this substrate. The intrinsic electric field along the Fe-O bond changes between the three complexes and shows a positive correlation with the HAT activation barrier, suggesting that modulating electric field can be used for fine engineering KDM catalysis with a specific substrate. The results reveal how KDM4A uses a combination of strategies to enable near equally efficient demethylation of different H3Kme3 residues.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":\" \",\"pages\":\"e202403989\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/chem.202403989\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403989","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

组蛋白赖氨酸去甲基化酶 4A(KDM4A)是一种非血红素铁(II)/2-氧代戊二酸(2OG)依赖性加氧酶,可催化组蛋白 H3 的 9、27 和 36 位三甲基化赖氨酸残基(H3K9me3、H3K27me3 和 H3K36me3)的去甲基化。这些甲基化残基显示出截然不同的转录作用;因此,了解 KDM4A 对这些底物的催化机制对于解释控制不同序列依赖性去甲基化的因素至关重要。在这项研究中,我们使用基于分子动力学(MD)的量子力学/分子力学(QM/MM)相结合的方法研究了 KDM4A 对 H3K9me3、H3K27me3 和 H3K36me3 底物催化的决定因素。在KDM4A-H3(5-14)K9me3和KDM4A-H3(23-32)K27me3摆渡配合物中,O-H距离与限速步骤的活化障碍呈正相关,但在KDM4A-H3(32-41)K36me3中,没有发现直接的一一对应关系,这意味着几何参数、第二球相互作用和固有电场之间的协同效应有助于该底物的有效催化。沿 Fe-O 键的固有电场在三种复合物之间发生变化,并与 HAT 活化障碍呈正相关,这表明调节电场可用于 KDM 与特定底物催化的精细工程。研究结果揭示了 KDM4A 如何利用多种策略的组合来实现对不同 H3Kme3 残基近乎同样高效的去甲基化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Origins of Catalysis in Non-Heme Fe(II)/2-Oxoglutarate-Dependent Histone Lysine Demethylase KDM4A with Differently Methylated Histone H3 Peptides.

Histone lysine demethylase 4 A (KDM4A), a non-heme Fe(II)/2-oxoglutarate (2OG) dependent oxygenase that catalyzes the demethylation of tri-methylated lysine residues at the 9, 27, and 36 positions of histone H3 (H3 K9me3, H3 K27me3, and H3 K36me3). These methylated residues show contrasting transcriptional roles; therefore, understanding KDM4A's catalytic mechanisms with these substrates is essential to explain the factors that control the different sequence-dependent demethylations. In this study, we use molecular dynamics (MD)-based combined quantum mechanics/molecular mechanics (QM/MM) methods to investigate determinants of KDM4A catalysis with H3 K9me3, H3 K27me3 and H3 K36me3 substrates. In KDM4A-H3(5-14)K9me3 and KDM4A-H3(23-32)K27me3 ferryl complexes, the O-H distance positively correlates with the activation barrier of the rate-limiting step, however in the KDM4A-H3(32-41)K36me3, no direct one-to-one relationship was found implying that the synergistic effects between the geometric parameters, second sphere interactions and the intrinsic electric field contribute for the effective catalysis for this substrate. The intrinsic electric field along the Fe-O bond changes between the three complexes and shows a positive correlation with the HAT activation barrier, suggesting that modulating electric field can be used for fine engineering KDM catalysis with a specific substrate. The results reveal how KDM4A uses a combination of strategies to enable near equally efficient demethylation of different H3Kme3 residues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信