通过混合高介电层改善 MoS2 场效应晶体管的热耗散。

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Biomaterials Science & Engineering Pub Date : 2024-11-13 Epub Date: 2024-11-02 DOI:10.1021/acsami.4c12143
Jian Huang, Yifan Li, Xiaotong Yu, Zexin Liu, Fanfan Wang, Yue Yue, Rong Zhang, Ruiwen Dai, Kai Yang, Heng Liu, Qingyang Fan, Donghui Hong, Qiang Chen, Zhiqiang Wang, Yuan Gao, Guoqing Xin
{"title":"通过混合高介电层改善 MoS2 场效应晶体管的热耗散。","authors":"Jian Huang, Yifan Li, Xiaotong Yu, Zexin Liu, Fanfan Wang, Yue Yue, Rong Zhang, Ruiwen Dai, Kai Yang, Heng Liu, Qingyang Fan, Donghui Hong, Qiang Chen, Zhiqiang Wang, Yuan Gao, Guoqing Xin","doi":"10.1021/acsami.4c12143","DOIUrl":null,"url":null,"abstract":"<p><p>Transition metal dichalcogenides like MoS<sub>2</sub> have been considered as crucial channel materials beyond silicon to continuously advance transistor scaling down owing to their two-dimensional structure and exceptional electrical properties. However, the undesirable interface morphology and vibrational phonon frequency mismatch between MoS<sub>2</sub> and the dielectric layer induce low thermal boundary conductance, resulting in overheating issues and impeding electrical performance improvement in the MoS<sub>2</sub> field-effect transistors. Here, we employed hybrid high-<i>k</i> dielectric layers of Al<sub>2</sub>O<sub>3</sub>/HfO<sub>2</sub> to simultaneously reduce the interfacial thermal resistance and improve device electrical performance. The enhanced contact, greater vibrational phonon overlapping region, and stronger interfacial bonding force between the top Al<sub>2</sub>O<sub>3</sub> layer and MoS<sub>2</sub> promote the heat removal efficiency across the interface to the substrate. Under the same input power density, the temperature profile of the MoS<sub>2</sub> transistor on the Al<sub>2</sub>O<sub>3</sub>/HfO<sub>2</sub> has been largely reduced compared to that of the device on HfO<sub>2</sub>, with a maximum reduction of 49.5 °C. In addition, the field-effect mobility and current of MoS<sub>2</sub> devices on the Al<sub>2</sub>O<sub>3</sub>/HfO<sub>2</sub> high-<i>k</i> dielectric layers have been significantly improved, attributed to the depressed electron scattering and trap states at the interface. The design of the hybrid high-<i>k</i> dielectric layers provides an efficient solution to simultaneously improve the thermal and electrical performance of the two-dimensional devices.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Thermal Dissipation in a MoS<sub>2</sub> Field-Effect Transistor by Hybrid High-<i>k</i> Dielectric Layers.\",\"authors\":\"Jian Huang, Yifan Li, Xiaotong Yu, Zexin Liu, Fanfan Wang, Yue Yue, Rong Zhang, Ruiwen Dai, Kai Yang, Heng Liu, Qingyang Fan, Donghui Hong, Qiang Chen, Zhiqiang Wang, Yuan Gao, Guoqing Xin\",\"doi\":\"10.1021/acsami.4c12143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transition metal dichalcogenides like MoS<sub>2</sub> have been considered as crucial channel materials beyond silicon to continuously advance transistor scaling down owing to their two-dimensional structure and exceptional electrical properties. However, the undesirable interface morphology and vibrational phonon frequency mismatch between MoS<sub>2</sub> and the dielectric layer induce low thermal boundary conductance, resulting in overheating issues and impeding electrical performance improvement in the MoS<sub>2</sub> field-effect transistors. Here, we employed hybrid high-<i>k</i> dielectric layers of Al<sub>2</sub>O<sub>3</sub>/HfO<sub>2</sub> to simultaneously reduce the interfacial thermal resistance and improve device electrical performance. The enhanced contact, greater vibrational phonon overlapping region, and stronger interfacial bonding force between the top Al<sub>2</sub>O<sub>3</sub> layer and MoS<sub>2</sub> promote the heat removal efficiency across the interface to the substrate. Under the same input power density, the temperature profile of the MoS<sub>2</sub> transistor on the Al<sub>2</sub>O<sub>3</sub>/HfO<sub>2</sub> has been largely reduced compared to that of the device on HfO<sub>2</sub>, with a maximum reduction of 49.5 °C. In addition, the field-effect mobility and current of MoS<sub>2</sub> devices on the Al<sub>2</sub>O<sub>3</sub>/HfO<sub>2</sub> high-<i>k</i> dielectric layers have been significantly improved, attributed to the depressed electron scattering and trap states at the interface. The design of the hybrid high-<i>k</i> dielectric layers provides an efficient solution to simultaneously improve the thermal and electrical performance of the two-dimensional devices.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c12143\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c12143","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

MoS2 等过渡金属二钙化物因其二维结构和优异的电气性能,一直被认为是硅以外的重要通道材料,可不断推动晶体管规模的缩小。然而,MoS2 与介电层之间不理想的界面形态和振动声子频率不匹配会导致热边界传导率较低,从而引发过热问题,阻碍 MoS2 场效应晶体管电气性能的提高。在这里,我们采用了 Al2O3/HfO2 混合高 K 介电层,以同时降低界面热阻和改善器件电气性能。顶部 Al2O3 层与 MoS2 之间的接触增强、振动声子重叠区扩大以及界面结合力增强,提高了整个界面与衬底之间的散热效率。在相同的输入功率密度下,Al2O3/HfO2 上的 MoS2 晶体管的温度曲线与 HfO2 上的器件相比大幅降低,最高降低了 49.5 °C。此外,Al2O3/HfO2 高 k 介电层上 MoS2 器件的场效应迁移率和电流也得到了显著改善,这归功于界面上电子散射和陷阱态的抑制。混合高 K 介电层的设计为同时提高二维器件的热性能和电性能提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Thermal Dissipation in a MoS2 Field-Effect Transistor by Hybrid High-k Dielectric Layers.

Transition metal dichalcogenides like MoS2 have been considered as crucial channel materials beyond silicon to continuously advance transistor scaling down owing to their two-dimensional structure and exceptional electrical properties. However, the undesirable interface morphology and vibrational phonon frequency mismatch between MoS2 and the dielectric layer induce low thermal boundary conductance, resulting in overheating issues and impeding electrical performance improvement in the MoS2 field-effect transistors. Here, we employed hybrid high-k dielectric layers of Al2O3/HfO2 to simultaneously reduce the interfacial thermal resistance and improve device electrical performance. The enhanced contact, greater vibrational phonon overlapping region, and stronger interfacial bonding force between the top Al2O3 layer and MoS2 promote the heat removal efficiency across the interface to the substrate. Under the same input power density, the temperature profile of the MoS2 transistor on the Al2O3/HfO2 has been largely reduced compared to that of the device on HfO2, with a maximum reduction of 49.5 °C. In addition, the field-effect mobility and current of MoS2 devices on the Al2O3/HfO2 high-k dielectric layers have been significantly improved, attributed to the depressed electron scattering and trap states at the interface. The design of the hybrid high-k dielectric layers provides an efficient solution to simultaneously improve the thermal and electrical performance of the two-dimensional devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信