预测尿路结石复发:对来自 MSTONE 数据库的重复 24 小时尿液采集进行联合模型分析。

IF 2 2区 医学 Q2 UROLOGY & NEPHROLOGY
Zifang Kong, Brett A Johnson, Naim M Maalouf, Stephen Y Nakada, Chad R Tracy, Ryan L Steinberg, Nicole Miller, Jodi A Antonelli, Yair Lotan, Margaret S Pearle, Yu-Lun Liu
{"title":"预测尿路结石复发:对来自 MSTONE 数据库的重复 24 小时尿液采集进行联合模型分析。","authors":"Zifang Kong, Brett A Johnson, Naim M Maalouf, Stephen Y Nakada, Chad R Tracy, Ryan L Steinberg, Nicole Miller, Jodi A Antonelli, Yair Lotan, Margaret S Pearle, Yu-Lun Liu","doi":"10.1007/s00240-024-01653-5","DOIUrl":null,"url":null,"abstract":"<p><p>To address the limitations in existing urinary stone recurrence (USR) models, including failure to account for changes in 24-hour urine (24U) parameters over time and ignoring multiplicity of stone recurrences, we presented a novel statistical method to jointly model temporal trends in 24U parameters and multiple recurrent stone events. The MSTONE database spanning May 2001 to April 2015 was analyzed. A joint recurrent model was employed, combining a linear mixed-effects model for longitudinal 24U parameters and a recurrent event model with a dynamic first-order Autoregressive (AR(1)) structure. A mixture cure component was included to handle patient heterogeneity. Comparisons were made with existing methods, multivariable Cox regression and conditional Prentice-Williams-Peterson regression, both applied to established nomograms. Among 396 patients (median follow-up of 2.93 years; IQR, 1.53-4.36 years), 34.6% remained free of stone recurrence throughout the study period, 30.0% experienced a single recurrence, and 35.4% had multiple recurrences. The joint recurrent model with a mixture cure component identified significant associations between 24U parameters - including urine pH (adjusted HR = 1.991; 95% CI 1.490-2.660; p < 0.001), total volume (adjusted HR = 0.700; 95% CI 0.501-0.977; p = 0.036), potassium (adjusted HR = 0.983; 95% CI 0.974-0.991; p < 0.001), uric acid (adjusted HR = 1.528; 95% CI 1.105-2.113, p = 0.010), calcium (adjusted HR = 1.164; 95% CI 1.052-1.289; p = 0.003), and citrate (adjusted HR = 0.796; 95% CI 0.706-0.897; p < 0.001), and USR, achieving better predictive performance compared to existing methods. 24U parameters play an important role in prevention of USR, and therefore, patients with a history of stones are recommended to closely monitor for future recurrence by regularly conducting 24U tests.</p>","PeriodicalId":23411,"journal":{"name":"Urolithiasis","volume":"52 1","pages":"156"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530469/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting urinary stone recurrence: a joint model analysis of repeated 24-hour urine collections from the MSTONE database.\",\"authors\":\"Zifang Kong, Brett A Johnson, Naim M Maalouf, Stephen Y Nakada, Chad R Tracy, Ryan L Steinberg, Nicole Miller, Jodi A Antonelli, Yair Lotan, Margaret S Pearle, Yu-Lun Liu\",\"doi\":\"10.1007/s00240-024-01653-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the limitations in existing urinary stone recurrence (USR) models, including failure to account for changes in 24-hour urine (24U) parameters over time and ignoring multiplicity of stone recurrences, we presented a novel statistical method to jointly model temporal trends in 24U parameters and multiple recurrent stone events. The MSTONE database spanning May 2001 to April 2015 was analyzed. A joint recurrent model was employed, combining a linear mixed-effects model for longitudinal 24U parameters and a recurrent event model with a dynamic first-order Autoregressive (AR(1)) structure. A mixture cure component was included to handle patient heterogeneity. Comparisons were made with existing methods, multivariable Cox regression and conditional Prentice-Williams-Peterson regression, both applied to established nomograms. Among 396 patients (median follow-up of 2.93 years; IQR, 1.53-4.36 years), 34.6% remained free of stone recurrence throughout the study period, 30.0% experienced a single recurrence, and 35.4% had multiple recurrences. The joint recurrent model with a mixture cure component identified significant associations between 24U parameters - including urine pH (adjusted HR = 1.991; 95% CI 1.490-2.660; p < 0.001), total volume (adjusted HR = 0.700; 95% CI 0.501-0.977; p = 0.036), potassium (adjusted HR = 0.983; 95% CI 0.974-0.991; p < 0.001), uric acid (adjusted HR = 1.528; 95% CI 1.105-2.113, p = 0.010), calcium (adjusted HR = 1.164; 95% CI 1.052-1.289; p = 0.003), and citrate (adjusted HR = 0.796; 95% CI 0.706-0.897; p < 0.001), and USR, achieving better predictive performance compared to existing methods. 24U parameters play an important role in prevention of USR, and therefore, patients with a history of stones are recommended to closely monitor for future recurrence by regularly conducting 24U tests.</p>\",\"PeriodicalId\":23411,\"journal\":{\"name\":\"Urolithiasis\",\"volume\":\"52 1\",\"pages\":\"156\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530469/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urolithiasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00240-024-01653-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urolithiasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00240-024-01653-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决现有尿路结石复发(USR)模型的局限性,包括不能考虑24小时尿液(24U)参数随时间的变化以及忽略结石复发的多重性,我们提出了一种新的统计方法,以联合模拟24U参数的时间趋势和多重复发结石事件。我们对 2001 年 5 月至 2015 年 4 月的 MSTONE 数据库进行了分析。我们采用了一个联合复发模型,将纵向 24U 参数的线性混合效应模型和具有动态一阶自回归(AR(1))结构的复发事件模型相结合。该模型还包括一个混合治疗组件,以处理患者的异质性。该模型与现有方法、多变量 Cox 回归和条件 Prentice-Williams-Peterson 回归进行了比较,这两种方法都适用于已建立的提名图。在 396 名患者中(中位数随访时间为 2.93 年;IQR 为 1.53-4.36 年),34.6% 的患者在整个研究期间没有结石复发,30.0% 的患者经历了一次复发,35.4% 的患者经历了多次复发。具有混合治愈成分的联合复发模型确定了 24U 参数(包括尿 pH 值)之间的显著相关性(调整后 HR = 1.991;95% CI 1.490-2.660; p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting urinary stone recurrence: a joint model analysis of repeated 24-hour urine collections from the MSTONE database.

To address the limitations in existing urinary stone recurrence (USR) models, including failure to account for changes in 24-hour urine (24U) parameters over time and ignoring multiplicity of stone recurrences, we presented a novel statistical method to jointly model temporal trends in 24U parameters and multiple recurrent stone events. The MSTONE database spanning May 2001 to April 2015 was analyzed. A joint recurrent model was employed, combining a linear mixed-effects model for longitudinal 24U parameters and a recurrent event model with a dynamic first-order Autoregressive (AR(1)) structure. A mixture cure component was included to handle patient heterogeneity. Comparisons were made with existing methods, multivariable Cox regression and conditional Prentice-Williams-Peterson regression, both applied to established nomograms. Among 396 patients (median follow-up of 2.93 years; IQR, 1.53-4.36 years), 34.6% remained free of stone recurrence throughout the study period, 30.0% experienced a single recurrence, and 35.4% had multiple recurrences. The joint recurrent model with a mixture cure component identified significant associations between 24U parameters - including urine pH (adjusted HR = 1.991; 95% CI 1.490-2.660; p < 0.001), total volume (adjusted HR = 0.700; 95% CI 0.501-0.977; p = 0.036), potassium (adjusted HR = 0.983; 95% CI 0.974-0.991; p < 0.001), uric acid (adjusted HR = 1.528; 95% CI 1.105-2.113, p = 0.010), calcium (adjusted HR = 1.164; 95% CI 1.052-1.289; p = 0.003), and citrate (adjusted HR = 0.796; 95% CI 0.706-0.897; p < 0.001), and USR, achieving better predictive performance compared to existing methods. 24U parameters play an important role in prevention of USR, and therefore, patients with a history of stones are recommended to closely monitor for future recurrence by regularly conducting 24U tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Urolithiasis
Urolithiasis UROLOGY & NEPHROLOGY-
CiteScore
4.50
自引率
6.50%
发文量
74
期刊介绍: Official Journal of the International Urolithiasis Society The journal aims to publish original articles in the fields of clinical and experimental investigation only within the sphere of urolithiasis and its related areas of research. The journal covers all aspects of urolithiasis research including the diagnosis, epidemiology, pathogenesis, genetics, clinical biochemistry, open and non-invasive surgical intervention, nephrological investigation, chemistry and prophylaxis of the disorder. The Editor welcomes contributions on topics of interest to urologists, nephrologists, radiologists, clinical biochemists, epidemiologists, nutritionists, basic scientists and nurses working in that field. Contributions may be submitted as full-length articles or as rapid communications in the form of Letters to the Editor. Articles should be original and should contain important new findings from carefully conducted studies designed to produce statistically significant data. Please note that we no longer publish articles classified as Case Reports. Editorials and review articles may be published by invitation from the Editorial Board. All submissions are peer-reviewed. Through an electronic system for the submission and review of manuscripts, the Editor and Associate Editors aim to make publication accessible as quickly as possible to a large number of readers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信