Ademola C Famurewa, Nupura Manish Prabhune, Sudharshan Prabhu
{"title":"天然产物缓解铂类化疗毒性中的铁中毒现象:靶向基础氧化信号通路。","authors":"Ademola C Famurewa, Nupura Manish Prabhune, Sudharshan Prabhu","doi":"10.1093/jpp/rgae132","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Platinum-based anticancer chemotherapy (PAC) represents a cornerstone in cancer treatment, retaining its status as the gold standard therapy. However, PAC's efficacy is countered by significant toxicities, such as nephrotoxicity, ototoxicity, and neurotoxicity. Recent studies have linked these toxicities to ferroptosis, characterized by iron accumulation, reactive oxygen species generation, and lipid peroxidation. This review explores the mechanisms underlying PAC-induced toxicities, focusing on the involvement of ferroptosis with three major PAC drugs-cisplatin, carboplatin, and oxaliplatin. Further, we provide a comprehensive analysis of the natural product mitigation of PAC-induced ferroptotic toxicity.</p><p><strong>Key findings: </strong>The mechanistic role of ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, while studies on carboplatin-induced ferroptotic toxicities are lacking. Natural compounds targeting molecular pathways of ferroptosis have been explored to mitigate PAC-induced ferroptotic toxicity.</p><p><strong>Conclusion: </strong>While ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, there remains a notable dearth of studies examining its involvement in carboplatin-induced toxicities. Hence, further exploration is warranted to define the role of ferroptosis in carboplatin-induced toxicities, and its further mitigation. Moreover, in-depth mechanistic evaluation is necessary to establish natural products evaluated against PAC-induced ferroptosis, as PAC adjuvants.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":"1-17"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural product mitigation of ferroptosis in platinum-based chemotherapy toxicity: targeting the underpinning oxidative signaling pathways.\",\"authors\":\"Ademola C Famurewa, Nupura Manish Prabhune, Sudharshan Prabhu\",\"doi\":\"10.1093/jpp/rgae132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Platinum-based anticancer chemotherapy (PAC) represents a cornerstone in cancer treatment, retaining its status as the gold standard therapy. However, PAC's efficacy is countered by significant toxicities, such as nephrotoxicity, ototoxicity, and neurotoxicity. Recent studies have linked these toxicities to ferroptosis, characterized by iron accumulation, reactive oxygen species generation, and lipid peroxidation. This review explores the mechanisms underlying PAC-induced toxicities, focusing on the involvement of ferroptosis with three major PAC drugs-cisplatin, carboplatin, and oxaliplatin. Further, we provide a comprehensive analysis of the natural product mitigation of PAC-induced ferroptotic toxicity.</p><p><strong>Key findings: </strong>The mechanistic role of ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, while studies on carboplatin-induced ferroptotic toxicities are lacking. Natural compounds targeting molecular pathways of ferroptosis have been explored to mitigate PAC-induced ferroptotic toxicity.</p><p><strong>Conclusion: </strong>While ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, there remains a notable dearth of studies examining its involvement in carboplatin-induced toxicities. Hence, further exploration is warranted to define the role of ferroptosis in carboplatin-induced toxicities, and its further mitigation. Moreover, in-depth mechanistic evaluation is necessary to establish natural products evaluated against PAC-induced ferroptosis, as PAC adjuvants.</p>\",\"PeriodicalId\":16960,\"journal\":{\"name\":\"Journal of Pharmacy and Pharmacology\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacy and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jpp/rgae132\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jpp/rgae132","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Natural product mitigation of ferroptosis in platinum-based chemotherapy toxicity: targeting the underpinning oxidative signaling pathways.
Objectives: Platinum-based anticancer chemotherapy (PAC) represents a cornerstone in cancer treatment, retaining its status as the gold standard therapy. However, PAC's efficacy is countered by significant toxicities, such as nephrotoxicity, ototoxicity, and neurotoxicity. Recent studies have linked these toxicities to ferroptosis, characterized by iron accumulation, reactive oxygen species generation, and lipid peroxidation. This review explores the mechanisms underlying PAC-induced toxicities, focusing on the involvement of ferroptosis with three major PAC drugs-cisplatin, carboplatin, and oxaliplatin. Further, we provide a comprehensive analysis of the natural product mitigation of PAC-induced ferroptotic toxicity.
Key findings: The mechanistic role of ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, while studies on carboplatin-induced ferroptotic toxicities are lacking. Natural compounds targeting molecular pathways of ferroptosis have been explored to mitigate PAC-induced ferroptotic toxicity.
Conclusion: While ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, there remains a notable dearth of studies examining its involvement in carboplatin-induced toxicities. Hence, further exploration is warranted to define the role of ferroptosis in carboplatin-induced toxicities, and its further mitigation. Moreover, in-depth mechanistic evaluation is necessary to establish natural products evaluated against PAC-induced ferroptosis, as PAC adjuvants.
期刊介绍:
JPP keeps pace with new research on how drug action may be optimized by new technologies, and attention is given to understanding and improving drug interactions in the body. At the same time, the journal maintains its established and well-respected core strengths in areas such as pharmaceutics and drug delivery, experimental and clinical pharmacology, biopharmaceutics and drug disposition, and drugs from natural sources. JPP publishes at least one special issue on a topical theme each year.