Rosalin Das, Patitapaban Mohanty, Pragyan P Dash, Swagatika Mishra, Ajit K Bishoyi, Lokanath Mishra, Laxmipriya Prusty, Devi P Behera, Debasmita Dubey, Monalisa Mishra, Harekrushna Sahoo, Mohd S Khan, Santosh K Sethi, Bigyan R Jali
{"title":"揭示吡啶衍生物的相互作用、细胞毒性和抗菌潜力:与牛血清白蛋白的实验和理论方法。","authors":"Rosalin Das, Patitapaban Mohanty, Pragyan P Dash, Swagatika Mishra, Ajit K Bishoyi, Lokanath Mishra, Laxmipriya Prusty, Devi P Behera, Debasmita Dubey, Monalisa Mishra, Harekrushna Sahoo, Mohd S Khan, Santosh K Sethi, Bigyan R Jali","doi":"10.1007/s00210-024-03541-6","DOIUrl":null,"url":null,"abstract":"<p><p>The binding interactions between bovine serum albumin (BSA) and three pyridine derivatives, i.e., 2-(5-bromopyridin-3-yl) acetic acid (L1), 3-bromo-5-nitropyridine (L2) and 2-chloro-4-nitropyridine (L3), have been carried out using UV-Vis and fluorescence spectroscopic methods. Fluorescence intensity quenching is observed by adding L2 and L3 to the BSA solution. The quenched fluorescence emission is due to the static nature. An isothermal titration calorimetry (ITC) experiment shows the binding ability of L1 with BSA. The binding constants are found to be 7.23 ± 0.32 × 10<sup>5</sup> M<sup>-1</sup> for L1. The thermodynamic parameters were calculated from ITC measurements (i.e., ∆H = -2.78 ± 0.08 kcal/mol, ∆G = -5.65 ± 0.25 kcal/mol, and -T∆S = -2.87 ± 0.11 kcal/mol), which indicated that the protein-ligand complex formation between L1 and BSA is mainly due to the hydrogen bonds and van der Waals interactions. Cyclic voltammetry (CV) and structure activity and relationship (SAR) studies have been carried out to establish the relationship between ligands and proteins. Additionally, we conducted an antibacterial assay with gram-positive Staphylococcus aureus, Enterococcus faecalis, and negative bacterial strains Acinetobacter baumannii and Escherichia coli against L1, L2, and L3, aiming to address the challenges posed by the co-existence of multidrug-resistant bacteria. Finally, drosophila is used to test the cytotoxicity of ligands L1, L2, and L3's in vitro.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":"4449-4466"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the interaction, cytotoxicity and antibacterial potential of pyridine derivatives: an experimental and theoretical approach with bovine serum albumin.\",\"authors\":\"Rosalin Das, Patitapaban Mohanty, Pragyan P Dash, Swagatika Mishra, Ajit K Bishoyi, Lokanath Mishra, Laxmipriya Prusty, Devi P Behera, Debasmita Dubey, Monalisa Mishra, Harekrushna Sahoo, Mohd S Khan, Santosh K Sethi, Bigyan R Jali\",\"doi\":\"10.1007/s00210-024-03541-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The binding interactions between bovine serum albumin (BSA) and three pyridine derivatives, i.e., 2-(5-bromopyridin-3-yl) acetic acid (L1), 3-bromo-5-nitropyridine (L2) and 2-chloro-4-nitropyridine (L3), have been carried out using UV-Vis and fluorescence spectroscopic methods. Fluorescence intensity quenching is observed by adding L2 and L3 to the BSA solution. The quenched fluorescence emission is due to the static nature. An isothermal titration calorimetry (ITC) experiment shows the binding ability of L1 with BSA. The binding constants are found to be 7.23 ± 0.32 × 10<sup>5</sup> M<sup>-1</sup> for L1. The thermodynamic parameters were calculated from ITC measurements (i.e., ∆H = -2.78 ± 0.08 kcal/mol, ∆G = -5.65 ± 0.25 kcal/mol, and -T∆S = -2.87 ± 0.11 kcal/mol), which indicated that the protein-ligand complex formation between L1 and BSA is mainly due to the hydrogen bonds and van der Waals interactions. Cyclic voltammetry (CV) and structure activity and relationship (SAR) studies have been carried out to establish the relationship between ligands and proteins. Additionally, we conducted an antibacterial assay with gram-positive Staphylococcus aureus, Enterococcus faecalis, and negative bacterial strains Acinetobacter baumannii and Escherichia coli against L1, L2, and L3, aiming to address the challenges posed by the co-existence of multidrug-resistant bacteria. Finally, drosophila is used to test the cytotoxicity of ligands L1, L2, and L3's in vitro.</p>\",\"PeriodicalId\":18876,\"journal\":{\"name\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"volume\":\" \",\"pages\":\"4449-4466\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-024-03541-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03541-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Unveiling the interaction, cytotoxicity and antibacterial potential of pyridine derivatives: an experimental and theoretical approach with bovine serum albumin.
The binding interactions between bovine serum albumin (BSA) and three pyridine derivatives, i.e., 2-(5-bromopyridin-3-yl) acetic acid (L1), 3-bromo-5-nitropyridine (L2) and 2-chloro-4-nitropyridine (L3), have been carried out using UV-Vis and fluorescence spectroscopic methods. Fluorescence intensity quenching is observed by adding L2 and L3 to the BSA solution. The quenched fluorescence emission is due to the static nature. An isothermal titration calorimetry (ITC) experiment shows the binding ability of L1 with BSA. The binding constants are found to be 7.23 ± 0.32 × 105 M-1 for L1. The thermodynamic parameters were calculated from ITC measurements (i.e., ∆H = -2.78 ± 0.08 kcal/mol, ∆G = -5.65 ± 0.25 kcal/mol, and -T∆S = -2.87 ± 0.11 kcal/mol), which indicated that the protein-ligand complex formation between L1 and BSA is mainly due to the hydrogen bonds and van der Waals interactions. Cyclic voltammetry (CV) and structure activity and relationship (SAR) studies have been carried out to establish the relationship between ligands and proteins. Additionally, we conducted an antibacterial assay with gram-positive Staphylococcus aureus, Enterococcus faecalis, and negative bacterial strains Acinetobacter baumannii and Escherichia coli against L1, L2, and L3, aiming to address the challenges posed by the co-existence of multidrug-resistant bacteria. Finally, drosophila is used to test the cytotoxicity of ligands L1, L2, and L3's in vitro.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.