{"title":"磁化施瓦兹柴尔德黑洞周围具有磁偶极矩的粒子轨道:S2 星轨道的应用","authors":"Uktamjon Uktamov, Mohsen Fathi, Javlon Rayimbaev, Ahmadjon Abdujabbarov","doi":"10.1103/physrevd.110.084084","DOIUrl":null,"url":null,"abstract":"This study provides a comprehensive analytical investigation of the bound and unbound motion of magnetized particles orbiting a Schwarzschild black hole immersed in an external asymptotically uniform magnetic field, which includes all conceivable types of bounded and unbounded orbits. In particular, for planetary orbits, we perform a comparative analysis of our findings with the observed position of the S2 star carrying magnetic dipole moment around Sagittarius A*. We found maximum and minimum values for the parameter of magnetic interaction between the magnetic dipole of the star and the external magnetic field, as well as the energy and angular momentum of the S2 star. As a result, we obtain estimations of the magnetic dipole of the star in the order of <mjx-container ctxtmenu_counter=\"30\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(14 (2 0 1) 3 4 (10 5 6 (9 7 8)))\"><mjx-mrow data-semantic-children=\"2,3,4,10\" data-semantic-collapsed=\"(14 (c 11 12 13) 2 3 4 10)\" data-semantic- data-semantic-owns=\"2 3 4 10\" data-semantic-role=\"text\" data-semantic-speech=\"10 Superscript 6 Baseline normal upper G dot c m cubed\" data-semantic-type=\"punctuated\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"14\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>6</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"5,9\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"5 6 9\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>G</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,·\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>·</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"7,8\" data-semantic- data-semantic-owns=\"7 8\" data-semantic-parent=\"10\" data-semantic-role=\"unknown\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">c</mjx-c><mjx-c style=\"padding-top: 0.485em;\">m</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-mrow></mjx-math></mjx-container>. Additionally, we explore deflecting trajectories akin to gravitational Rutherford scattering. In obtaining the solutions for the orbital equations, we articulate the elliptic integrals and Jacobi elliptic functions, and illustrative figures and simulations augment our study.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"16 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbits of particles with magnetic dipole moment around magnetized Schwarzschild black holes: Applications to the S2 star orbit\",\"authors\":\"Uktamjon Uktamov, Mohsen Fathi, Javlon Rayimbaev, Ahmadjon Abdujabbarov\",\"doi\":\"10.1103/physrevd.110.084084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study provides a comprehensive analytical investigation of the bound and unbound motion of magnetized particles orbiting a Schwarzschild black hole immersed in an external asymptotically uniform magnetic field, which includes all conceivable types of bounded and unbounded orbits. In particular, for planetary orbits, we perform a comparative analysis of our findings with the observed position of the S2 star carrying magnetic dipole moment around Sagittarius A*. We found maximum and minimum values for the parameter of magnetic interaction between the magnetic dipole of the star and the external magnetic field, as well as the energy and angular momentum of the S2 star. As a result, we obtain estimations of the magnetic dipole of the star in the order of <mjx-container ctxtmenu_counter=\\\"30\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(14 (2 0 1) 3 4 (10 5 6 (9 7 8)))\\\"><mjx-mrow data-semantic-children=\\\"2,3,4,10\\\" data-semantic-collapsed=\\\"(14 (c 11 12 13) 2 3 4 10)\\\" data-semantic- data-semantic-owns=\\\"2 3 4 10\\\" data-semantic-role=\\\"text\\\" data-semantic-speech=\\\"10 Superscript 6 Baseline normal upper G dot c m cubed\\\" data-semantic-type=\\\"punctuated\\\"><mjx-msup data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"superscript\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.642em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.642em;\\\">0</mjx-c></mjx-mn><mjx-script style=\\\"vertical-align: 0.369em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>6</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"text\\\" style='font-family: MJX-STX-ZERO, \\\"Helvetica Neue\\\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\\\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\\\" variant=\\\"-explicitFont\\\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"text\\\" style='font-family: MJX-STX-ZERO, \\\"Helvetica Neue\\\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\\\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\\\" variant=\\\"-explicitFont\\\"> </mjx-utext></mjx-mtext><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"6\\\" data-semantic- data-semantic-owns=\\\"5 6 9\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>G</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,·\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" space=\\\"3\\\"><mjx-c>·</mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"7,8\\\" data-semantic- data-semantic-owns=\\\"7 8\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"superscript\\\" space=\\\"3\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.485em;\\\">c</mjx-c><mjx-c style=\\\"padding-top: 0.485em;\\\">m</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: 0.363em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-mrow></mjx-math></mjx-container>. Additionally, we explore deflecting trajectories akin to gravitational Rutherford scattering. In obtaining the solutions for the orbital equations, we articulate the elliptic integrals and Jacobi elliptic functions, and illustrative figures and simulations augment our study.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.084084\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.084084","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Orbits of particles with magnetic dipole moment around magnetized Schwarzschild black holes: Applications to the S2 star orbit
This study provides a comprehensive analytical investigation of the bound and unbound motion of magnetized particles orbiting a Schwarzschild black hole immersed in an external asymptotically uniform magnetic field, which includes all conceivable types of bounded and unbounded orbits. In particular, for planetary orbits, we perform a comparative analysis of our findings with the observed position of the S2 star carrying magnetic dipole moment around Sagittarius A*. We found maximum and minimum values for the parameter of magnetic interaction between the magnetic dipole of the star and the external magnetic field, as well as the energy and angular momentum of the S2 star. As a result, we obtain estimations of the magnetic dipole of the star in the order of 106G·cm3. Additionally, we explore deflecting trajectories akin to gravitational Rutherford scattering. In obtaining the solutions for the orbital equations, we articulate the elliptic integrals and Jacobi elliptic functions, and illustrative figures and simulations augment our study.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.