{"title":"原位氮掺杂碳纳米管封装 Co9S8 纳米粒子作为锌-空气电池的自支撑双功能空气电极","authors":"Qihao Wu, Heju Gao, Jiahui Jiang, Ting Zhao, Shuai Liu, Chunyan Wu, Guancheng Xu, Li Zhang","doi":"10.1016/j.jmst.2024.09.046","DOIUrl":null,"url":null,"abstract":"A flexible air electrode with excellent activity and stability is essential for flexible zinc-air batteries. In this study, we report the rational design of nitrogen-doped carbon nanotube-encapsulated Co<sub>9</sub>S<sub>8</sub> nanoparticles on carbon cloth (Co<sub>9</sub>S<sub>8</sub>/NCNTs/CC), serving as self-supporting air electrodes for both liquid-state and flexible zinc-air batteries. The Co<sub>9</sub>S<sub>8</sub>/NCNTs/CC-1 exhibited a half-wave potential of 0.86 V for oxygen reduction reaction (ORR) and achieved a current density of 10 mA cm<sup>−2</sup> for oxygen evolution reaction (OER) at a voltage of only 1.52 V. The well-constructed nanotube on carbon cloth facilitates mass diffusion and electron transfer, while enhancing the mechanical flexibility of the material. Density functional theory (DFT) calculations suggested that the synergistic interaction between Co<sub>9</sub>S<sub>8</sub> and NCNTs effectively enhanced the bifunctional electrocatalytic performance of the material. Liquid-state and flexible zinc-air batteries assembled with Co<sub>9</sub>S<sub>8</sub>/NCNTs/CC-1 demonstrated outstanding charge-discharge capabilities and long-term stability.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"19 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ nitrogen-doped carbon nanotube-encapsulated Co9S8 nanoparticles as self-supporting bifunctional air electrodes for zinc-air batteries\",\"authors\":\"Qihao Wu, Heju Gao, Jiahui Jiang, Ting Zhao, Shuai Liu, Chunyan Wu, Guancheng Xu, Li Zhang\",\"doi\":\"10.1016/j.jmst.2024.09.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A flexible air electrode with excellent activity and stability is essential for flexible zinc-air batteries. In this study, we report the rational design of nitrogen-doped carbon nanotube-encapsulated Co<sub>9</sub>S<sub>8</sub> nanoparticles on carbon cloth (Co<sub>9</sub>S<sub>8</sub>/NCNTs/CC), serving as self-supporting air electrodes for both liquid-state and flexible zinc-air batteries. The Co<sub>9</sub>S<sub>8</sub>/NCNTs/CC-1 exhibited a half-wave potential of 0.86 V for oxygen reduction reaction (ORR) and achieved a current density of 10 mA cm<sup>−2</sup> for oxygen evolution reaction (OER) at a voltage of only 1.52 V. The well-constructed nanotube on carbon cloth facilitates mass diffusion and electron transfer, while enhancing the mechanical flexibility of the material. Density functional theory (DFT) calculations suggested that the synergistic interaction between Co<sub>9</sub>S<sub>8</sub> and NCNTs effectively enhanced the bifunctional electrocatalytic performance of the material. Liquid-state and flexible zinc-air batteries assembled with Co<sub>9</sub>S<sub>8</sub>/NCNTs/CC-1 demonstrated outstanding charge-discharge capabilities and long-term stability.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.09.046\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.09.046","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
In-situ nitrogen-doped carbon nanotube-encapsulated Co9S8 nanoparticles as self-supporting bifunctional air electrodes for zinc-air batteries
A flexible air electrode with excellent activity and stability is essential for flexible zinc-air batteries. In this study, we report the rational design of nitrogen-doped carbon nanotube-encapsulated Co9S8 nanoparticles on carbon cloth (Co9S8/NCNTs/CC), serving as self-supporting air electrodes for both liquid-state and flexible zinc-air batteries. The Co9S8/NCNTs/CC-1 exhibited a half-wave potential of 0.86 V for oxygen reduction reaction (ORR) and achieved a current density of 10 mA cm−2 for oxygen evolution reaction (OER) at a voltage of only 1.52 V. The well-constructed nanotube on carbon cloth facilitates mass diffusion and electron transfer, while enhancing the mechanical flexibility of the material. Density functional theory (DFT) calculations suggested that the synergistic interaction between Co9S8 and NCNTs effectively enhanced the bifunctional electrocatalytic performance of the material. Liquid-state and flexible zinc-air batteries assembled with Co9S8/NCNTs/CC-1 demonstrated outstanding charge-discharge capabilities and long-term stability.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.