Xixi Cai, Hang Zhang, Changqing Mu, Yanjun Chen, Chongzhen He, Mingyu Liu, Thomas Laux, Limin Pi
{"title":"miR160触发的移动转录轴控制拟南芥根干细胞龛的维持和再生","authors":"Xixi Cai, Hang Zhang, Changqing Mu, Yanjun Chen, Chongzhen He, Mingyu Liu, Thomas Laux, Limin Pi","doi":"10.1016/j.devcel.2024.10.006","DOIUrl":null,"url":null,"abstract":"In multicellular organisms, communication between cells is vital for their fate determination. In plants, the quiescent center (QC) signals to adjacent stem cells to maintain them undifferentiated. However, how surrounding stem cells instruct the QC remains poorly understood. Here, we show that in the <em>Arabidopsis</em> root, microRNA160 (miR160) moves from stele stem cells (SSCs) to the QC, where it degrades the mRNAs of two auxin response factors, <em>ARF10</em> and <em>ARF17</em>. This degradation relieves <em>BRAVO</em> from direct transcriptional repression, maintaining QC quiescence. We further identify that blocking miR160 movement due to DNA damage-induced SSC death and restricted symplastic transport reduces <em>BRAVO</em> and <em>WOX5</em> expression, leading to QC division to replenish damaged stem cells during root regeneration. Together, our results demonstrate that a transcriptional axis initiated by mobile miR160 regulates the QC and stem cell behavior, advancing our understanding of the communication between stem cells and their surrounding cellular environment.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"87 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mobile miR160-triggered transcriptional axis controls root stem cell niche maintenance and regeneration in Arabidopsis\",\"authors\":\"Xixi Cai, Hang Zhang, Changqing Mu, Yanjun Chen, Chongzhen He, Mingyu Liu, Thomas Laux, Limin Pi\",\"doi\":\"10.1016/j.devcel.2024.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multicellular organisms, communication between cells is vital for their fate determination. In plants, the quiescent center (QC) signals to adjacent stem cells to maintain them undifferentiated. However, how surrounding stem cells instruct the QC remains poorly understood. Here, we show that in the <em>Arabidopsis</em> root, microRNA160 (miR160) moves from stele stem cells (SSCs) to the QC, where it degrades the mRNAs of two auxin response factors, <em>ARF10</em> and <em>ARF17</em>. This degradation relieves <em>BRAVO</em> from direct transcriptional repression, maintaining QC quiescence. We further identify that blocking miR160 movement due to DNA damage-induced SSC death and restricted symplastic transport reduces <em>BRAVO</em> and <em>WOX5</em> expression, leading to QC division to replenish damaged stem cells during root regeneration. Together, our results demonstrate that a transcriptional axis initiated by mobile miR160 regulates the QC and stem cell behavior, advancing our understanding of the communication between stem cells and their surrounding cellular environment.\",\"PeriodicalId\":11157,\"journal\":{\"name\":\"Developmental cell\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.devcel.2024.10.006\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.10.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A mobile miR160-triggered transcriptional axis controls root stem cell niche maintenance and regeneration in Arabidopsis
In multicellular organisms, communication between cells is vital for their fate determination. In plants, the quiescent center (QC) signals to adjacent stem cells to maintain them undifferentiated. However, how surrounding stem cells instruct the QC remains poorly understood. Here, we show that in the Arabidopsis root, microRNA160 (miR160) moves from stele stem cells (SSCs) to the QC, where it degrades the mRNAs of two auxin response factors, ARF10 and ARF17. This degradation relieves BRAVO from direct transcriptional repression, maintaining QC quiescence. We further identify that blocking miR160 movement due to DNA damage-induced SSC death and restricted symplastic transport reduces BRAVO and WOX5 expression, leading to QC division to replenish damaged stem cells during root regeneration. Together, our results demonstrate that a transcriptional axis initiated by mobile miR160 regulates the QC and stem cell behavior, advancing our understanding of the communication between stem cells and their surrounding cellular environment.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.