Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati, Matt Visser
{"title":"没有考奇地平线的质量膨胀","authors":"Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati, Matt Visser","doi":"10.1103/physrevlett.133.181402","DOIUrl":null,"url":null,"abstract":"Mass inflation is a well established instability, conventionally associated to Cauchy horizons (which are also inner trapping horizons) of stationary geometries, leading to a divergent exponential buildup of energy. We show here that finite (but often large) exponential buildups of energy are present for dynamical geometries describing accreting black holes with slowly evolving inner trapping horizons, even in the absence of Cauchy horizons. The explicit evaluation of the adiabatic conditions behind these exponential buildups shows that this phenomenon is universally present for physically reasonable accreting conditions. This noneternal mass inflation does not require the introduction of global spacetime concepts. We also show that various known results in the literature are recovered in the limit in which the inner trapping horizon asymptotically approaches a Cauchy horizon. Our results imply that black hole geometries with nonextremal inner horizons, including the Kerr geometry in general relativity, and nonextremal regular black holes in theories beyond general relativity, can describe dynamical transients but not the long-lived end point of gravitational collapse.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"16 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass Inflation without Cauchy Horizons\",\"authors\":\"Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati, Matt Visser\",\"doi\":\"10.1103/physrevlett.133.181402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mass inflation is a well established instability, conventionally associated to Cauchy horizons (which are also inner trapping horizons) of stationary geometries, leading to a divergent exponential buildup of energy. We show here that finite (but often large) exponential buildups of energy are present for dynamical geometries describing accreting black holes with slowly evolving inner trapping horizons, even in the absence of Cauchy horizons. The explicit evaluation of the adiabatic conditions behind these exponential buildups shows that this phenomenon is universally present for physically reasonable accreting conditions. This noneternal mass inflation does not require the introduction of global spacetime concepts. We also show that various known results in the literature are recovered in the limit in which the inner trapping horizon asymptotically approaches a Cauchy horizon. Our results imply that black hole geometries with nonextremal inner horizons, including the Kerr geometry in general relativity, and nonextremal regular black holes in theories beyond general relativity, can describe dynamical transients but not the long-lived end point of gravitational collapse.\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.133.181402\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.181402","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Mass inflation is a well established instability, conventionally associated to Cauchy horizons (which are also inner trapping horizons) of stationary geometries, leading to a divergent exponential buildup of energy. We show here that finite (but often large) exponential buildups of energy are present for dynamical geometries describing accreting black holes with slowly evolving inner trapping horizons, even in the absence of Cauchy horizons. The explicit evaluation of the adiabatic conditions behind these exponential buildups shows that this phenomenon is universally present for physically reasonable accreting conditions. This noneternal mass inflation does not require the introduction of global spacetime concepts. We also show that various known results in the literature are recovered in the limit in which the inner trapping horizon asymptotically approaches a Cauchy horizon. Our results imply that black hole geometries with nonextremal inner horizons, including the Kerr geometry in general relativity, and nonextremal regular black holes in theories beyond general relativity, can describe dynamical transients but not the long-lived end point of gravitational collapse.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks