从 "kination "看 "宇宙弦网络 "的 "渗透

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Joseph P. Conlon, Edmund J. Copeland, Edward Hardy, Noelia Sánchez González
{"title":"从 \"kination \"看 \"宇宙弦网络 \"的 \"渗透","authors":"Joseph P. Conlon, Edmund J. Copeland, Edward Hardy, Noelia Sánchez González","doi":"10.1103/physrevd.110.083537","DOIUrl":null,"url":null,"abstract":"We describe a new mechanism, whose ingredients are realized in string compactifications, for the formation of cosmic (super)string networks. Oscillating string loops grow when their tension <mjx-container ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"mu\" data-semantic-type=\"identifier\"><mjx-c>𝜇</mjx-c></mjx-mi></mjx-math></mjx-container> decreases with time. If <mjx-container ctxtmenu_counter=\"5\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"12,9\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"12 8 9\" data-semantic-role=\"inequality\" data-semantic-speech=\"2 upper H plus ModifyingAbove mu With dot divided by mu less than 0\" data-semantic-structure=\"(14 (12 (11 0 10 1) 2 (13 (5 3 4) 6 7)) 8 9)\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"11,13\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"11 2 13\" data-semantic-parent=\"14\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" inline-breaks=\"true\"><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"10\" data-semantic- data-semantic-owns=\"0 10 1\" data-semantic-parent=\"12\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐻</mjx-c></mjx-mi></mjx-mrow><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"12\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"5,7\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"5 6 7\" data-semantic-parent=\"12\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"3\"><mjx-mover data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"13\" data-semantic-role=\"greekletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.102em; padding-left: 0.355em; margin-bottom: -0.56em;\"><mjx-mo data-semantic-annotation=\"accent:overaccent\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"overaccent\" data-semantic-type=\"punctuation\" style=\"width: 0px; margin-left: -0.097em;\"><mjx-c>˙</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜇</mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"13\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜇</mjx-c></mjx-mi></mjx-mrow></mjx-mrow><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,&lt;\" data-semantic-parent=\"14\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>&lt;</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>0</mjx-c></mjx-mn></mjx-math></mjx-container>, where <mjx-container ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper H\" data-semantic-type=\"identifier\"><mjx-c>𝐻</mjx-c></mjx-mi></mjx-math></mjx-container> is the Hubble parameter, loops grow faster than the scale factor and an initial population of isolated small loops (for example, produced by nucleation) can grow, percolate, and form a network. This condition is satisfied for fundamental strings in the background of a kinating volume modulus rolling toward the asymptotic large volume region of moduli space. Such long kination epochs are motivated in string cosmology by both the electroweak hierarchy problem and the need to solve the overshoot problem. The tension of such a network today is set by the final vacuum; for phenomenologically appealing large volume scenario vacua, this would lead to a fundamental string network with <mjx-container ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"9,7\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"9 2 7\" data-semantic-role=\"equality\" data-semantic-speech=\"upper G mu tilde 10 Superscript negative 10\" data-semantic-structure=\"(10 (9 0 8 1) 2 (7 3 (6 4 5)))\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"0 8 1\" data-semantic-parent=\"10\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐺</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜇</mjx-c></mjx-mi></mjx-mrow><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,∼\" data-semantic-parent=\"10\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>∼</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"3,6\" data-semantic- data-semantic-owns=\"3 6\" data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"5\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"6\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-math></mjx-container>.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"16 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Percolating cosmic string networks from kination\",\"authors\":\"Joseph P. Conlon, Edmund J. Copeland, Edward Hardy, Noelia Sánchez González\",\"doi\":\"10.1103/physrevd.110.083537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a new mechanism, whose ingredients are realized in string compactifications, for the formation of cosmic (super)string networks. Oscillating string loops grow when their tension <mjx-container ctxtmenu_counter=\\\"4\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"mu\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝜇</mjx-c></mjx-mi></mjx-math></mjx-container> decreases with time. If <mjx-container ctxtmenu_counter=\\\"5\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"12,9\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-owns=\\\"12 8 9\\\" data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"2 upper H plus ModifyingAbove mu With dot divided by mu less than 0\\\" data-semantic-structure=\\\"(14 (12 (11 0 10 1) 2 (13 (5 3 4) 6 7)) 8 9)\\\" data-semantic-type=\\\"relseq\\\"><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"11,13\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-owns=\\\"11 2 13\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"infixop\\\" inline-breaks=\\\"true\\\"><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"10\\\" data-semantic- data-semantic-owns=\\\"0 10 1\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐻</mjx-c></mjx-mi></mjx-mrow><mjx-break size=\\\"3\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,+\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\"><mjx-c>+</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"5,7\\\" data-semantic-content=\\\"6\\\" data-semantic- data-semantic-owns=\\\"5 6 7\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\" space=\\\"3\\\"><mjx-mover data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-owns=\\\"3 4\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.102em; padding-left: 0.355em; margin-bottom: -0.56em;\\\"><mjx-mo data-semantic-annotation=\\\"accent:overaccent\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"width: 0px; margin-left: -0.097em;\\\"><mjx-c>˙</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝜇</mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\"><mjx-c>/</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝜇</mjx-c></mjx-mi></mjx-mrow></mjx-mrow><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,&lt;\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\"><mjx-c>&lt;</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" space=\\\"4\\\"><mjx-c>0</mjx-c></mjx-mn></mjx-math></mjx-container>, where <mjx-container ctxtmenu_counter=\\\"6\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper H\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐻</mjx-c></mjx-mi></mjx-math></mjx-container> is the Hubble parameter, loops grow faster than the scale factor and an initial population of isolated small loops (for example, produced by nucleation) can grow, percolate, and form a network. This condition is satisfied for fundamental strings in the background of a kinating volume modulus rolling toward the asymptotic large volume region of moduli space. Such long kination epochs are motivated in string cosmology by both the electroweak hierarchy problem and the need to solve the overshoot problem. The tension of such a network today is set by the final vacuum; for phenomenologically appealing large volume scenario vacua, this would lead to a fundamental string network with <mjx-container ctxtmenu_counter=\\\"7\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"9,7\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-owns=\\\"9 2 7\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"upper G mu tilde 10 Superscript negative 10\\\" data-semantic-structure=\\\"(10 (9 0 8 1) 2 (7 3 (6 4 5)))\\\" data-semantic-type=\\\"relseq\\\"><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-owns=\\\"0 8 1\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐺</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝜇</mjx-c></mjx-mi></mjx-mrow><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,∼\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\"><mjx-c>∼</mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"3,6\\\" data-semantic- data-semantic-owns=\\\"3 6\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"superscript\\\" space=\\\"4\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.642em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.642em;\\\">0</mjx-c></mjx-mn><mjx-script style=\\\"vertical-align: 0.369em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"5\\\" data-semantic-content=\\\"4\\\" data-semantic- data-semantic-owns=\\\"4 5\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\" size=\\\"s\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.642em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.642em;\\\">0</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-math></mjx-container>.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.083537\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.083537","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了宇宙(超)弦网络形成的一种新机制,其成分在弦压缩中得以实现。当振荡弦环的张力 𝜇 随时间减小时,它们就会增长。如果2𝐻+˙/𝜇<0,其中𝐻是哈勃参数,那么弦环的增长速度就会超过尺度因子,最初的孤立小弦环群体(例如,通过成核产生的)就会增长、渗透并形成网络。在向模量空间渐近大体积区域滚动的激化体积模量背景下,基本弦可以满足这一条件。在弦宇宙学中,电弱层次问题和解决过冲问题的需要都促使弦产生如此长的kination纪元。如今,这种网络的张力由最终真空设定;对于现象学上吸引人的大体积情景真空,这将导致具有𝐺∼10-10𝜇的基本弦网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Percolating cosmic string networks from kination
We describe a new mechanism, whose ingredients are realized in string compactifications, for the formation of cosmic (super)string networks. Oscillating string loops grow when their tension 𝜇 decreases with time. If 2𝐻+˙𝜇/𝜇<0, where 𝐻 is the Hubble parameter, loops grow faster than the scale factor and an initial population of isolated small loops (for example, produced by nucleation) can grow, percolate, and form a network. This condition is satisfied for fundamental strings in the background of a kinating volume modulus rolling toward the asymptotic large volume region of moduli space. Such long kination epochs are motivated in string cosmology by both the electroweak hierarchy problem and the need to solve the overshoot problem. The tension of such a network today is set by the final vacuum; for phenomenologically appealing large volume scenario vacua, this would lead to a fundamental string network with 𝐺𝜇1010.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信