{"title":"红外有限散射理论:振幅和软定理","authors":"Kartik Prabhu, Gautam Satishchandran","doi":"10.1103/physrevd.110.085022","DOIUrl":null,"url":null,"abstract":"Any nontrivial scattering with massless fields in four spacetime dimensions will generically produce an out-state with memory. Scattering with any massless fields violates the standard assumption of asymptotic completeness—that all “in” and “out” states lie in the standard (zero-memory) Fock space—and therefore leads to infrared divergences in the standard <mjx-container ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi></mjx-math></mjx-container>-matrix amplitudes. In this paper, we define an infrared finite scattering theory which assumes only (1) the existence of in-/out-algebras and (2) that Heisenberg evolution is an automorphism of these algebras. The resulting “superscattering” map <mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"dollar sign\" data-semantic-type=\"identifier\"><mjx-c>$</mjx-c></mjx-mi></mjx-math></mjx-container> allows for transitions between different in/out memory states and agrees with the standard <mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi></mjx-math></mjx-container> matrix when it is defined. We construct <mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"dollar sign\" data-semantic-type=\"identifier\"><mjx-c>$</mjx-c></mjx-mi></mjx-math></mjx-container> amplitudes by defining (3) a “generalized asymptotic completeness” which accommodates states with memory in the space of asymptotic states and (4) a complete basis of improper states that generalize the usual <mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"n\" data-semantic-type=\"identifier\"><mjx-c>𝑛</mjx-c></mjx-mi></mjx-math></mjx-container>-particle momentum basis to account for states with memory. Using only general properties of <mjx-container ctxtmenu_counter=\"13\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"dollar sign\" data-semantic-type=\"identifier\"><mjx-c>$</mjx-c></mjx-mi></mjx-math></mjx-container>, we prove an analog of the Weinberg soft theorems in quantum gravity and QED which imply that all <mjx-container ctxtmenu_counter=\"14\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"dollar sign\" data-semantic-type=\"identifier\"><mjx-c>$</mjx-c></mjx-mi></mjx-math></mjx-container> amplitudes are well defined in the infrared. We comment on how one must generalize this framework to consider <mjx-container ctxtmenu_counter=\"15\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"dollar sign\" data-semantic-type=\"identifier\"><mjx-c>$</mjx-c></mjx-mi></mjx-math></mjx-container> amplitudes for theories with collinear divergences (e.g., massless QED and Yang-Mills theories).","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"113 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared finite scattering theory: Amplitudes and soft theorems\",\"authors\":\"Kartik Prabhu, Gautam Satishchandran\",\"doi\":\"10.1103/physrevd.110.085022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Any nontrivial scattering with massless fields in four spacetime dimensions will generically produce an out-state with memory. Scattering with any massless fields violates the standard assumption of asymptotic completeness—that all “in” and “out” states lie in the standard (zero-memory) Fock space—and therefore leads to infrared divergences in the standard <mjx-container ctxtmenu_counter=\\\"8\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑆</mjx-c></mjx-mi></mjx-math></mjx-container>-matrix amplitudes. In this paper, we define an infrared finite scattering theory which assumes only (1) the existence of in-/out-algebras and (2) that Heisenberg evolution is an automorphism of these algebras. The resulting “superscattering” map <mjx-container ctxtmenu_counter=\\\"9\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"dollar sign\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>$</mjx-c></mjx-mi></mjx-math></mjx-container> allows for transitions between different in/out memory states and agrees with the standard <mjx-container ctxtmenu_counter=\\\"10\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑆</mjx-c></mjx-mi></mjx-math></mjx-container> matrix when it is defined. We construct <mjx-container ctxtmenu_counter=\\\"11\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"dollar sign\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>$</mjx-c></mjx-mi></mjx-math></mjx-container> amplitudes by defining (3) a “generalized asymptotic completeness” which accommodates states with memory in the space of asymptotic states and (4) a complete basis of improper states that generalize the usual <mjx-container ctxtmenu_counter=\\\"12\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"n\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑛</mjx-c></mjx-mi></mjx-math></mjx-container>-particle momentum basis to account for states with memory. Using only general properties of <mjx-container ctxtmenu_counter=\\\"13\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"dollar sign\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>$</mjx-c></mjx-mi></mjx-math></mjx-container>, we prove an analog of the Weinberg soft theorems in quantum gravity and QED which imply that all <mjx-container ctxtmenu_counter=\\\"14\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"dollar sign\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>$</mjx-c></mjx-mi></mjx-math></mjx-container> amplitudes are well defined in the infrared. We comment on how one must generalize this framework to consider <mjx-container ctxtmenu_counter=\\\"15\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"dollar sign\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>$</mjx-c></mjx-mi></mjx-math></mjx-container> amplitudes for theories with collinear divergences (e.g., massless QED and Yang-Mills theories).\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.085022\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.085022","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Infrared finite scattering theory: Amplitudes and soft theorems
Any nontrivial scattering with massless fields in four spacetime dimensions will generically produce an out-state with memory. Scattering with any massless fields violates the standard assumption of asymptotic completeness—that all “in” and “out” states lie in the standard (zero-memory) Fock space—and therefore leads to infrared divergences in the standard 𝑆-matrix amplitudes. In this paper, we define an infrared finite scattering theory which assumes only (1) the existence of in-/out-algebras and (2) that Heisenberg evolution is an automorphism of these algebras. The resulting “superscattering” map $ allows for transitions between different in/out memory states and agrees with the standard 𝑆 matrix when it is defined. We construct $ amplitudes by defining (3) a “generalized asymptotic completeness” which accommodates states with memory in the space of asymptotic states and (4) a complete basis of improper states that generalize the usual 𝑛-particle momentum basis to account for states with memory. Using only general properties of $, we prove an analog of the Weinberg soft theorems in quantum gravity and QED which imply that all $ amplitudes are well defined in the infrared. We comment on how one must generalize this framework to consider $ amplitudes for theories with collinear divergences (e.g., massless QED and Yang-Mills theories).
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.