利用原位甲烷通量数据和机器学习方法量化全球湿地甲烷排放量

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Earths Future Pub Date : 2024-10-31 DOI:10.1029/2023EF004330
Shuo Chen, Licheng Liu, Yuchi Ma, Qianlai Zhuang, Narasinha J. Shurpali
{"title":"利用原位甲烷通量数据和机器学习方法量化全球湿地甲烷排放量","authors":"Shuo Chen,&nbsp;Licheng Liu,&nbsp;Yuchi Ma,&nbsp;Qianlai Zhuang,&nbsp;Narasinha J. Shurpali","doi":"10.1029/2023EF004330","DOIUrl":null,"url":null,"abstract":"<p>Wetland methane (CH<sub>4</sub>) emissions have a significant impact on the global climate system. However, the current estimation of wetland CH<sub>4</sub> emissions at the global scale still has large uncertainties. Here we developed six distinct bottom-up machine learning (ML) models using in situ CH<sub>4</sub> fluxes from both chamber measurements and the Fluxnet-CH<sub>4</sub> network. To reduce uncertainties, we adopted a multi-model ensemble (MME) approach to estimate CH<sub>4</sub> emissions. Precipitation, air temperature, soil properties, wetland types, and climate types are considered in developing the models. The MME is then extrapolated to the global scale to estimate CH<sub>4</sub> emissions from 1979 to 2099. We found that the annual wetland CH<sub>4</sub> emissions are 146.6 ± 12.2 Tg CH<sub>4</sub> yr<sup>−1</sup> (1 Tg = 10<sup>12</sup> g) from 1979 to 2022. Future emissions will reach 165.8 ± 11.6, 185.6 ± 15.0, and 193.6 ± 17.2 Tg CH<sub>4</sub> yr<sup>−1</sup> in the last two decades of the 21st century under SSP126, SSP370, and SSP585 scenarios, respectively. Northern Europe and near-equatorial areas are the current emission hotspots. To further constrain the quantification uncertainty, research priorities should be directed to comprehensive CH<sub>4</sub> measurements and better characterization of spatial dynamics of wetland areas. Our data-driven ML-based global wetland CH<sub>4</sub> emission products for both the contemporary and the 21st century shall facilitate future global CH<sub>4</sub> cycle studies.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 11","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF004330","citationCount":"0","resultStr":"{\"title\":\"Quantifying Global Wetland Methane Emissions With In Situ Methane Flux Data and Machine Learning Approaches\",\"authors\":\"Shuo Chen,&nbsp;Licheng Liu,&nbsp;Yuchi Ma,&nbsp;Qianlai Zhuang,&nbsp;Narasinha J. Shurpali\",\"doi\":\"10.1029/2023EF004330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wetland methane (CH<sub>4</sub>) emissions have a significant impact on the global climate system. However, the current estimation of wetland CH<sub>4</sub> emissions at the global scale still has large uncertainties. Here we developed six distinct bottom-up machine learning (ML) models using in situ CH<sub>4</sub> fluxes from both chamber measurements and the Fluxnet-CH<sub>4</sub> network. To reduce uncertainties, we adopted a multi-model ensemble (MME) approach to estimate CH<sub>4</sub> emissions. Precipitation, air temperature, soil properties, wetland types, and climate types are considered in developing the models. The MME is then extrapolated to the global scale to estimate CH<sub>4</sub> emissions from 1979 to 2099. We found that the annual wetland CH<sub>4</sub> emissions are 146.6 ± 12.2 Tg CH<sub>4</sub> yr<sup>−1</sup> (1 Tg = 10<sup>12</sup> g) from 1979 to 2022. Future emissions will reach 165.8 ± 11.6, 185.6 ± 15.0, and 193.6 ± 17.2 Tg CH<sub>4</sub> yr<sup>−1</sup> in the last two decades of the 21st century under SSP126, SSP370, and SSP585 scenarios, respectively. Northern Europe and near-equatorial areas are the current emission hotspots. To further constrain the quantification uncertainty, research priorities should be directed to comprehensive CH<sub>4</sub> measurements and better characterization of spatial dynamics of wetland areas. Our data-driven ML-based global wetland CH<sub>4</sub> emission products for both the contemporary and the 21st century shall facilitate future global CH<sub>4</sub> cycle studies.</p>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF004330\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023EF004330\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EF004330","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

湿地甲烷(CH4)排放对全球气候系统有重大影响。然而,目前对全球范围内湿地甲烷(CH4)排放量的估算仍存在很大的不确定性。在此,我们利用室内测量和 Fluxnet-CH4 网络的原位 CH4 通量,开发了六个不同的自下而上的机器学习 (ML) 模型。为了减少不确定性,我们采用了多模型集合(MME)方法来估算 CH4 排放量。在开发模型时考虑了降水、气温、土壤特性、湿地类型和气候类型。然后将 MME 推断到全球范围,以估算 1979 年至 2099 年的甲烷排放量。我们发现,从 1979 年到 2022 年,湿地每年的 CH4 排放量为 146.6 ± 12.2 Tg CH4 yr-1(1 Tg = 1012 g)。在 SSP126、SSP370 和 SSP585 情景下,未来 21 世纪最后 20 年的排放量将分别达到 165.8 ± 11.6、185.6 ± 15.0 和 193.6 ± 17.2 Tg CH4 yr-1。北欧和近赤道地区是当前的排放热点。为了进一步限制量化的不确定性,研究重点应放在全面测量 CH4 和更好地描述湿地区域的空间动态特征上。我们以数据为驱动、基于 ML 的当代和 21 世纪全球湿地 CH4 排放产品将有助于未来的全球 CH4 循环研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantifying Global Wetland Methane Emissions With In Situ Methane Flux Data and Machine Learning Approaches

Quantifying Global Wetland Methane Emissions With In Situ Methane Flux Data and Machine Learning Approaches

Wetland methane (CH4) emissions have a significant impact on the global climate system. However, the current estimation of wetland CH4 emissions at the global scale still has large uncertainties. Here we developed six distinct bottom-up machine learning (ML) models using in situ CH4 fluxes from both chamber measurements and the Fluxnet-CH4 network. To reduce uncertainties, we adopted a multi-model ensemble (MME) approach to estimate CH4 emissions. Precipitation, air temperature, soil properties, wetland types, and climate types are considered in developing the models. The MME is then extrapolated to the global scale to estimate CH4 emissions from 1979 to 2099. We found that the annual wetland CH4 emissions are 146.6 ± 12.2 Tg CH4 yr−1 (1 Tg = 1012 g) from 1979 to 2022. Future emissions will reach 165.8 ± 11.6, 185.6 ± 15.0, and 193.6 ± 17.2 Tg CH4 yr−1 in the last two decades of the 21st century under SSP126, SSP370, and SSP585 scenarios, respectively. Northern Europe and near-equatorial areas are the current emission hotspots. To further constrain the quantification uncertainty, research priorities should be directed to comprehensive CH4 measurements and better characterization of spatial dynamics of wetland areas. Our data-driven ML-based global wetland CH4 emission products for both the contemporary and the 21st century shall facilitate future global CH4 cycle studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信