研究岩石圈厚度和粘度对整个超大陆周期地幔动力学的影响

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
A. Plimmer, J. H. Davies, J. Panton
{"title":"研究岩石圈厚度和粘度对整个超大陆周期地幔动力学的影响","authors":"A. Plimmer,&nbsp;J. H. Davies,&nbsp;J. Panton","doi":"10.1029/2024GC011688","DOIUrl":null,"url":null,"abstract":"<p>The relationship between the lithosphere and the mantle during the supercontinent cycle is complex and poorly constrained. The processes which drive dispersal are often simplified to two end members: slab pull and plume push. We aim to explore how lithosphere thickness and viscosity during supercontinent assembly may affect the interaction of deep mantle structures throughout the supercontinent cycle. We consider supercontinental lithosphere structure as one of many potential processes which may affect the evolution of upwellings and downwellings and therefore systematically vary the properties of continental and cratonic lithosphere, respectively within our 3D spherical simulations. The viscosity and thickness of the lithosphere alters the dip and trajectory of downwelling material beneath the supercontinent as it assembles. Focusing on Pangea, we observe that plumes evolve and are swept beneath the center of the supercontinent by circum-continental subduction. The proximity of these upwelling and downwelling structures beneath the supercontinent interior varies with lithosphere thickness and viscosity. Where slabs impinge on the top of an evolving plume head (when continental and cratonic lithosphere are thick and viscous in our simulations), the cold slabs can reduce the magnitude of an evolving plume. Conversely, when the continental lithosphere is thin and weak in our simulations, slab dips shallow in the upper mantle and descend adjacent to the evolving plume, sweeping it laterally near the core-mantle boundary. These contrasting evolutions alter the magnitude of the thermal anomaly and the degree to which the plume can thin the lithosphere prior to breakup.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011688","citationCount":"0","resultStr":"{\"title\":\"Investigating the Effect of Lithosphere Thickness and Viscosity on Mantle Dynamics Throughout the Supercontinent Cycle\",\"authors\":\"A. Plimmer,&nbsp;J. H. Davies,&nbsp;J. Panton\",\"doi\":\"10.1029/2024GC011688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The relationship between the lithosphere and the mantle during the supercontinent cycle is complex and poorly constrained. The processes which drive dispersal are often simplified to two end members: slab pull and plume push. We aim to explore how lithosphere thickness and viscosity during supercontinent assembly may affect the interaction of deep mantle structures throughout the supercontinent cycle. We consider supercontinental lithosphere structure as one of many potential processes which may affect the evolution of upwellings and downwellings and therefore systematically vary the properties of continental and cratonic lithosphere, respectively within our 3D spherical simulations. The viscosity and thickness of the lithosphere alters the dip and trajectory of downwelling material beneath the supercontinent as it assembles. Focusing on Pangea, we observe that plumes evolve and are swept beneath the center of the supercontinent by circum-continental subduction. The proximity of these upwelling and downwelling structures beneath the supercontinent interior varies with lithosphere thickness and viscosity. Where slabs impinge on the top of an evolving plume head (when continental and cratonic lithosphere are thick and viscous in our simulations), the cold slabs can reduce the magnitude of an evolving plume. Conversely, when the continental lithosphere is thin and weak in our simulations, slab dips shallow in the upper mantle and descend adjacent to the evolving plume, sweeping it laterally near the core-mantle boundary. These contrasting evolutions alter the magnitude of the thermal anomaly and the degree to which the plume can thin the lithosphere prior to breakup.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"25 11\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011688\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011688\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011688","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

超大陆周期中岩石圈与地幔之间的关系非常复杂,而且缺乏约束。驱动地幔扩散的过程通常被简化为板块拉动和羽流推动两个末端环节。我们旨在探索超大陆组装过程中岩石圈厚度和粘度如何影响整个超大陆周期中深部地幔结构的相互作用。我们将超大陆岩石圈结构视为可能影响上涌和下沉演化的众多潜在过程之一,因此在三维球形模拟中分别系统地改变了大陆岩石圈和板块岩石圈的性质。岩石圈的粘度和厚度会改变超大陆组装过程中下沉物质的倾角和轨迹。以潘加大陆为中心,我们观察到羽流在超大陆中心下方演化并被环大陆俯冲卷走。这些上涌和下沉结构在超大陆内部下方的位置随岩石圈厚度和粘度的变化而变化。当板块撞击到正在演化的羽流顶端时(在我们的模拟中,当大陆岩石圈和板块岩石圈很厚且具有粘性时),冷板块会减小正在演化的羽流的规模。相反,当我们模拟的大陆岩石圈较薄较弱时,板块在上地幔中的倾角较浅,并在演化羽流附近下降,将羽流横向卷到地核-地幔边界附近。这些截然不同的演化改变了热异常的幅度,也改变了羽流在断裂前减薄岩石圈的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the Effect of Lithosphere Thickness and Viscosity on Mantle Dynamics Throughout the Supercontinent Cycle

Investigating the Effect of Lithosphere Thickness and Viscosity on Mantle Dynamics Throughout the Supercontinent Cycle

The relationship between the lithosphere and the mantle during the supercontinent cycle is complex and poorly constrained. The processes which drive dispersal are often simplified to two end members: slab pull and plume push. We aim to explore how lithosphere thickness and viscosity during supercontinent assembly may affect the interaction of deep mantle structures throughout the supercontinent cycle. We consider supercontinental lithosphere structure as one of many potential processes which may affect the evolution of upwellings and downwellings and therefore systematically vary the properties of continental and cratonic lithosphere, respectively within our 3D spherical simulations. The viscosity and thickness of the lithosphere alters the dip and trajectory of downwelling material beneath the supercontinent as it assembles. Focusing on Pangea, we observe that plumes evolve and are swept beneath the center of the supercontinent by circum-continental subduction. The proximity of these upwelling and downwelling structures beneath the supercontinent interior varies with lithosphere thickness and viscosity. Where slabs impinge on the top of an evolving plume head (when continental and cratonic lithosphere are thick and viscous in our simulations), the cold slabs can reduce the magnitude of an evolving plume. Conversely, when the continental lithosphere is thin and weak in our simulations, slab dips shallow in the upper mantle and descend adjacent to the evolving plume, sweeping it laterally near the core-mantle boundary. These contrasting evolutions alter the magnitude of the thermal anomaly and the degree to which the plume can thin the lithosphere prior to breakup.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信