破碎煤岩中瓦斯渗流特征的实验研究

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS
Dingyi Hao, Shihao Tu, Lei Zhang, Hongbin Zhao, Shikun Xu
{"title":"破碎煤岩中瓦斯渗流特征的实验研究","authors":"Dingyi Hao,&nbsp;Shihao Tu,&nbsp;Lei Zhang,&nbsp;Hongbin Zhao,&nbsp;Shikun Xu","doi":"10.1002/ese3.1916","DOIUrl":null,"url":null,"abstract":"<p>The characteristics of gas seepage in broken coal and rock composed of different particle sizes and grades were investigated in this study. On the basis of Darcy's law and non-Darcy seepage theory, equations of gas permeability in the nonlinear seepage of broken coal and rock, as well as the porosity of broken coal and rock, under triaxial compression were determined. The stress loading path of gas seepage in broken coal and rock was developed. The characteristics of gas seepage in broken coal and rock composed of different particle sizes and grades were analyzed, and the results showed that the gas permeability after compression was proportional to the particle size of the broken coal and rock. Under triaxial compression, the gas permeability of the broken coal and rock composed of graded-particle sizes was lower than that of the broken coal and rock composed of different single-particle sizes. The gas permeability of the broken coal was lower than that of the broken rock mass, and the gas permeability and porosity of the broken coal and rock can be described by the exponential decay function. At a constant porosity, the gas permeability of the broken coal and rock was proportional to the size grading index under triaxial compression. The coefficient of viscosity and gravity of the flow are key factors influencing the flow permeability in broken coal and rock. This study provides a reference for on-site practice such as the efficient extraction of gas in goafs.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4737-4752"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1916","citationCount":"0","resultStr":"{\"title\":\"Experimental study on characteristics of gas seepage in broken coal and rock\",\"authors\":\"Dingyi Hao,&nbsp;Shihao Tu,&nbsp;Lei Zhang,&nbsp;Hongbin Zhao,&nbsp;Shikun Xu\",\"doi\":\"10.1002/ese3.1916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The characteristics of gas seepage in broken coal and rock composed of different particle sizes and grades were investigated in this study. On the basis of Darcy's law and non-Darcy seepage theory, equations of gas permeability in the nonlinear seepage of broken coal and rock, as well as the porosity of broken coal and rock, under triaxial compression were determined. The stress loading path of gas seepage in broken coal and rock was developed. The characteristics of gas seepage in broken coal and rock composed of different particle sizes and grades were analyzed, and the results showed that the gas permeability after compression was proportional to the particle size of the broken coal and rock. Under triaxial compression, the gas permeability of the broken coal and rock composed of graded-particle sizes was lower than that of the broken coal and rock composed of different single-particle sizes. The gas permeability of the broken coal was lower than that of the broken rock mass, and the gas permeability and porosity of the broken coal and rock can be described by the exponential decay function. At a constant porosity, the gas permeability of the broken coal and rock was proportional to the size grading index under triaxial compression. The coefficient of viscosity and gravity of the flow are key factors influencing the flow permeability in broken coal and rock. This study provides a reference for on-site practice such as the efficient extraction of gas in goafs.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"12 10\",\"pages\":\"4737-4752\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1916\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1916\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1916","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了不同粒度和粒级的破碎煤岩中的瓦斯渗流特征。在达西定律和非达西渗流理论的基础上,确定了三轴压缩下破碎煤岩非线性渗流的瓦斯渗透率方程以及破碎煤岩的孔隙率。建立了破碎煤岩中瓦斯渗流的应力加载路径。分析了不同粒度和等级的破碎煤岩的瓦斯渗流特征,结果表明压缩后的瓦斯渗透率与破碎煤岩的粒度成正比。在三轴压缩条件下,粒度分级的破碎煤岩的瓦斯渗透率低于粒度单一的破碎煤岩的瓦斯渗透率。破碎煤块的透气性低于破碎岩块的透气性,破碎煤块和岩石的透气性和孔隙率可用指数衰减函数来描述。在孔隙率不变的情况下,破碎煤和岩石的瓦斯渗透率与三轴压缩下的粒度分级指数成正比。粘度系数和流动重力是影响破碎煤岩流动渗透性的关键因素。这项研究为现场实践提供了参考,如在煤层中高效提取瓦斯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental study on characteristics of gas seepage in broken coal and rock

Experimental study on characteristics of gas seepage in broken coal and rock

The characteristics of gas seepage in broken coal and rock composed of different particle sizes and grades were investigated in this study. On the basis of Darcy's law and non-Darcy seepage theory, equations of gas permeability in the nonlinear seepage of broken coal and rock, as well as the porosity of broken coal and rock, under triaxial compression were determined. The stress loading path of gas seepage in broken coal and rock was developed. The characteristics of gas seepage in broken coal and rock composed of different particle sizes and grades were analyzed, and the results showed that the gas permeability after compression was proportional to the particle size of the broken coal and rock. Under triaxial compression, the gas permeability of the broken coal and rock composed of graded-particle sizes was lower than that of the broken coal and rock composed of different single-particle sizes. The gas permeability of the broken coal was lower than that of the broken rock mass, and the gas permeability and porosity of the broken coal and rock can be described by the exponential decay function. At a constant porosity, the gas permeability of the broken coal and rock was proportional to the size grading index under triaxial compression. The coefficient of viscosity and gravity of the flow are key factors influencing the flow permeability in broken coal and rock. This study provides a reference for on-site practice such as the efficient extraction of gas in goafs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信