根据分布式声学传感数据重建近岸表面重力波高度

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Samuel Meulé, Julián Pelaez-Quiñones, Frédéric Bouchette, Anthony Sladen, Aurélien Ponte, Annika Maier, Itzhak Lior, Paschal Coyle
{"title":"根据分布式声学传感数据重建近岸表面重力波高度","authors":"Samuel Meulé,&nbsp;Julián Pelaez-Quiñones,&nbsp;Frédéric Bouchette,&nbsp;Anthony Sladen,&nbsp;Aurélien Ponte,&nbsp;Annika Maier,&nbsp;Itzhak Lior,&nbsp;Paschal Coyle","doi":"10.1029/2024EA003589","DOIUrl":null,"url":null,"abstract":"<p>Distributed Acoustic Sensing (DAS) is a photonics technology converting seafloor telecommunications and optical fiber cables into dense arrays of strain sensors, allowing to monitor various oceanic physical processes. Yet, several applications are hindered by the limited knowledge of the transfer function between geophysical variables and DAS measurements. This study investigates the quantitative relationship between surface gravity DAS-recorded wave-generated strain signals along the seafloor and the pressure at a colocated sensor. A remarkable linear correlation is found over various sea conditions allowing us to reliably determine significant wave heights from DAS data. Utilizing linear wave potential theory, we derive an analytical transfer function linking cable deformation and wave kinematic parameters. This transfer function provides a first quantification of the effects related to surface gravity waves and fiber responses. Our results validate DAS's potential for real-time reconstruction of the surface gravity wave spectrum over extended coastal areas. It also enables the estimation of waves hydraulic parameters at depth without the need from offshore deployments.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003589","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of Nearshore Surface Gravity Wave Heights From Distributed Acoustic Sensing Data\",\"authors\":\"Samuel Meulé,&nbsp;Julián Pelaez-Quiñones,&nbsp;Frédéric Bouchette,&nbsp;Anthony Sladen,&nbsp;Aurélien Ponte,&nbsp;Annika Maier,&nbsp;Itzhak Lior,&nbsp;Paschal Coyle\",\"doi\":\"10.1029/2024EA003589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Distributed Acoustic Sensing (DAS) is a photonics technology converting seafloor telecommunications and optical fiber cables into dense arrays of strain sensors, allowing to monitor various oceanic physical processes. Yet, several applications are hindered by the limited knowledge of the transfer function between geophysical variables and DAS measurements. This study investigates the quantitative relationship between surface gravity DAS-recorded wave-generated strain signals along the seafloor and the pressure at a colocated sensor. A remarkable linear correlation is found over various sea conditions allowing us to reliably determine significant wave heights from DAS data. Utilizing linear wave potential theory, we derive an analytical transfer function linking cable deformation and wave kinematic parameters. This transfer function provides a first quantification of the effects related to surface gravity waves and fiber responses. Our results validate DAS's potential for real-time reconstruction of the surface gravity wave spectrum over extended coastal areas. It also enables the estimation of waves hydraulic parameters at depth without the need from offshore deployments.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"11 11\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003589\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003589\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003589","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

分布式声学传感(DAS)是一种将海底电信和光纤电缆转换成密集应变传感器阵列的光子学技术,可用于监测各种海洋物理过程。然而,由于对地球物理变量与 DAS 测量之间传递函数的了解有限,一些应用受到了阻碍。本研究调查了沿海底的表面重力 DAS 记录波产生的应变信号与同位传感器压力之间的定量关系。在各种海况下都发现了明显的线性相关关系,使我们能够根据 DAS 数据可靠地确定显著波高。利用线性波势理论,我们推导出了连接电缆变形和波浪运动学参数的分析传递函数。该传递函数首次量化了与表面重力波和光纤响应相关的影响。我们的研究结果验证了 DAS 在实时重建沿海大范围表面重力波谱方面的潜力。它还可以估算波浪深度的水力参数,而无需进行海上部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reconstruction of Nearshore Surface Gravity Wave Heights From Distributed Acoustic Sensing Data

Reconstruction of Nearshore Surface Gravity Wave Heights From Distributed Acoustic Sensing Data

Distributed Acoustic Sensing (DAS) is a photonics technology converting seafloor telecommunications and optical fiber cables into dense arrays of strain sensors, allowing to monitor various oceanic physical processes. Yet, several applications are hindered by the limited knowledge of the transfer function between geophysical variables and DAS measurements. This study investigates the quantitative relationship between surface gravity DAS-recorded wave-generated strain signals along the seafloor and the pressure at a colocated sensor. A remarkable linear correlation is found over various sea conditions allowing us to reliably determine significant wave heights from DAS data. Utilizing linear wave potential theory, we derive an analytical transfer function linking cable deformation and wave kinematic parameters. This transfer function provides a first quantification of the effects related to surface gravity waves and fiber responses. Our results validate DAS's potential for real-time reconstruction of the surface gravity wave spectrum over extended coastal areas. It also enables the estimation of waves hydraulic parameters at depth without the need from offshore deployments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信