{"title":"利用部分观测到的异常现象检测能源盗窃","authors":"Hua Chen , Rongfei Ma , Xiufeng Liu , Ruyu Liu","doi":"10.1016/j.ijepes.2024.110323","DOIUrl":null,"url":null,"abstract":"<div><div>Energy theft poses a significant threat to the power industry, causing financial losses and grid instability. Existing detection methods often struggle with limited labeled data and the emergence of new, unobserved theft patterns. To address these challenges, we propose a novel method for energy theft detection that effectively leverages both partially observed anomalies and unlabeled data. Our approach integrates Discrete Wavelet Transform (DWT) for feature extraction, Fuzzy C-Means clustering for anomaly grouping, and weighted multi-class logistic regression for ensemble learning. Extensive experiments on a realistic dataset demonstrate that our method achieves high detection accuracy, outperforming several state-of-the-art methods, including deep learning models, while maintaining significantly lower computational cost. This robust and efficient approach enables effective detection of unobserved anomaly classes and reduces false positives, making it a valuable tool for developing reliable energy theft detection systems. We further conduct a feature importance analysis to identify influential features for optimizing detection accuracy and efficiency.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110323"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting energy theft with partially observed anomalies\",\"authors\":\"Hua Chen , Rongfei Ma , Xiufeng Liu , Ruyu Liu\",\"doi\":\"10.1016/j.ijepes.2024.110323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Energy theft poses a significant threat to the power industry, causing financial losses and grid instability. Existing detection methods often struggle with limited labeled data and the emergence of new, unobserved theft patterns. To address these challenges, we propose a novel method for energy theft detection that effectively leverages both partially observed anomalies and unlabeled data. Our approach integrates Discrete Wavelet Transform (DWT) for feature extraction, Fuzzy C-Means clustering for anomaly grouping, and weighted multi-class logistic regression for ensemble learning. Extensive experiments on a realistic dataset demonstrate that our method achieves high detection accuracy, outperforming several state-of-the-art methods, including deep learning models, while maintaining significantly lower computational cost. This robust and efficient approach enables effective detection of unobserved anomaly classes and reduces false positives, making it a valuable tool for developing reliable energy theft detection systems. We further conduct a feature importance analysis to identify influential features for optimizing detection accuracy and efficiency.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"162 \",\"pages\":\"Article 110323\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061524005465\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524005465","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Detecting energy theft with partially observed anomalies
Energy theft poses a significant threat to the power industry, causing financial losses and grid instability. Existing detection methods often struggle with limited labeled data and the emergence of new, unobserved theft patterns. To address these challenges, we propose a novel method for energy theft detection that effectively leverages both partially observed anomalies and unlabeled data. Our approach integrates Discrete Wavelet Transform (DWT) for feature extraction, Fuzzy C-Means clustering for anomaly grouping, and weighted multi-class logistic regression for ensemble learning. Extensive experiments on a realistic dataset demonstrate that our method achieves high detection accuracy, outperforming several state-of-the-art methods, including deep learning models, while maintaining significantly lower computational cost. This robust and efficient approach enables effective detection of unobserved anomaly classes and reduces false positives, making it a valuable tool for developing reliable energy theft detection systems. We further conduct a feature importance analysis to identify influential features for optimizing detection accuracy and efficiency.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.