Min Yang , Xianzhong Sun , Dapeng Chen , Peng Xiu , Jie Yang , Hongxia Mao
{"title":"考虑到涂层材料体积散射效应的改进型红外偏振模型","authors":"Min Yang , Xianzhong Sun , Dapeng Chen , Peng Xiu , Jie Yang , Hongxia Mao","doi":"10.1016/j.infrared.2024.105613","DOIUrl":null,"url":null,"abstract":"<div><div>The conventional infrared polarization models ignore the absorption and scattering of infrared light within the coating materials, as well as directional diffuse reflection effect of infrared radiation on the coating surface, which have the limitation for the description of infrared polarization characteristic of coating materials. An improved infrared polarized bidirectional reflectance distribution function (pBRDF) model is proposed based on the microfacet theory, which integrates a volume scattering component developed from the Kubelka-Munk theory, a multiple reflection component and a specular reflection component. This model is more consistent with the infrared polarization characteristics within the actual coating materials. The expression of degree of linear polarization (DoLP) of the infrared radiation is derived. The infrared polarization data of the silver and brown coatings at different measuring angles are acquired by the infrared polarization imaging system, and the model parameters are inverted using the least squares inverse performance method. The simulated and measured results for our coating samples show that the DoLP values simulated by the improved infrared pBRDF model are found in a good agreement with the measurements. The infrared DoLP does not change with the azimuth angle, and mainly influenced by the detection zenith angle, which has a great potential for material classification, polarization remote sensing and infrared scene modeling.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105613"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved infrared polarization model considering the volume scattering effect for coating materials\",\"authors\":\"Min Yang , Xianzhong Sun , Dapeng Chen , Peng Xiu , Jie Yang , Hongxia Mao\",\"doi\":\"10.1016/j.infrared.2024.105613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The conventional infrared polarization models ignore the absorption and scattering of infrared light within the coating materials, as well as directional diffuse reflection effect of infrared radiation on the coating surface, which have the limitation for the description of infrared polarization characteristic of coating materials. An improved infrared polarized bidirectional reflectance distribution function (pBRDF) model is proposed based on the microfacet theory, which integrates a volume scattering component developed from the Kubelka-Munk theory, a multiple reflection component and a specular reflection component. This model is more consistent with the infrared polarization characteristics within the actual coating materials. The expression of degree of linear polarization (DoLP) of the infrared radiation is derived. The infrared polarization data of the silver and brown coatings at different measuring angles are acquired by the infrared polarization imaging system, and the model parameters are inverted using the least squares inverse performance method. The simulated and measured results for our coating samples show that the DoLP values simulated by the improved infrared pBRDF model are found in a good agreement with the measurements. The infrared DoLP does not change with the azimuth angle, and mainly influenced by the detection zenith angle, which has a great potential for material classification, polarization remote sensing and infrared scene modeling.</div></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":\"143 \",\"pages\":\"Article 105613\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350449524004973\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524004973","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
An improved infrared polarization model considering the volume scattering effect for coating materials
The conventional infrared polarization models ignore the absorption and scattering of infrared light within the coating materials, as well as directional diffuse reflection effect of infrared radiation on the coating surface, which have the limitation for the description of infrared polarization characteristic of coating materials. An improved infrared polarized bidirectional reflectance distribution function (pBRDF) model is proposed based on the microfacet theory, which integrates a volume scattering component developed from the Kubelka-Munk theory, a multiple reflection component and a specular reflection component. This model is more consistent with the infrared polarization characteristics within the actual coating materials. The expression of degree of linear polarization (DoLP) of the infrared radiation is derived. The infrared polarization data of the silver and brown coatings at different measuring angles are acquired by the infrared polarization imaging system, and the model parameters are inverted using the least squares inverse performance method. The simulated and measured results for our coating samples show that the DoLP values simulated by the improved infrared pBRDF model are found in a good agreement with the measurements. The infrared DoLP does not change with the azimuth angle, and mainly influenced by the detection zenith angle, which has a great potential for material classification, polarization remote sensing and infrared scene modeling.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.