{"title":"用于加速感染性伤口愈合的自组装近红外光热抗菌 Hericium erinaceus β-葡聚糖/单宁酸/铁(III)水凝胶","authors":"Shi-Kang Chen, Jin-Jin Liu, Xin Wang, Hui Luo, Wei-Wei He, Xiao-Xiao Song, Jun-Yi Yin, Shao-Ping Nie","doi":"10.1016/j.carbpol.2024.122898","DOIUrl":null,"url":null,"abstract":"<div><div>Bacterial infection severely hinders skin wound healing, highlighting the critical application value of developing antibacterial and anti-inflammatory hydrogel dressings. In this work, we focused on β-glucan from <em>Hericium erinaceus</em> (HEBG) as the research object, and proposed a solvent-induced combined temperature manipulation technique to trigger multilevel self-assembly of β-glucan. Furthermore, we incorporated green synthesized near-infrared photosensitizer tannic acid (TA)/iron (III) complex into the system. A hydrogel with exceptional antibacterial properties, capable of responding to near-infrared photothermal stimuli while exhibiting remarkable stiffness and structural consistency, was successfully synthesized. Under near-infrared radiation, HEBG/TA/Fe hydrogels produced local hyperthermia and exhibited excellent antibacterial activity against bacteria-infected wounds. Moreover, the HEBG/TA/Fe hydrogel demonstrates its ability to regulate cytokines by effectively inhibiting the production of inflammatory mediators TNF-α and IL-6, while simultaneously enhancing the expression of cell proliferation factor KI-67 and markers associated with angiogenesis such as CD31 and α-SMA. Notably, the results of tissue staining revealed that the NIR + HEBG/TA/Fe<sub>5</sub> hydrogel could effectively promoting granulation and vascularization, improving collagen deposition in infected wounds thereby accelerating the healing process. These findings indicate that mixed hydrogels exhibit potential as viable options for the treatment of bacterial infections.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122898"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-assembled near-infrared-photothermal antibacterial Hericium erinaceus β-glucan/tannic acid/Fe (III) hydrogel for accelerating infected wound healing\",\"authors\":\"Shi-Kang Chen, Jin-Jin Liu, Xin Wang, Hui Luo, Wei-Wei He, Xiao-Xiao Song, Jun-Yi Yin, Shao-Ping Nie\",\"doi\":\"10.1016/j.carbpol.2024.122898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bacterial infection severely hinders skin wound healing, highlighting the critical application value of developing antibacterial and anti-inflammatory hydrogel dressings. In this work, we focused on β-glucan from <em>Hericium erinaceus</em> (HEBG) as the research object, and proposed a solvent-induced combined temperature manipulation technique to trigger multilevel self-assembly of β-glucan. Furthermore, we incorporated green synthesized near-infrared photosensitizer tannic acid (TA)/iron (III) complex into the system. A hydrogel with exceptional antibacterial properties, capable of responding to near-infrared photothermal stimuli while exhibiting remarkable stiffness and structural consistency, was successfully synthesized. Under near-infrared radiation, HEBG/TA/Fe hydrogels produced local hyperthermia and exhibited excellent antibacterial activity against bacteria-infected wounds. Moreover, the HEBG/TA/Fe hydrogel demonstrates its ability to regulate cytokines by effectively inhibiting the production of inflammatory mediators TNF-α and IL-6, while simultaneously enhancing the expression of cell proliferation factor KI-67 and markers associated with angiogenesis such as CD31 and α-SMA. Notably, the results of tissue staining revealed that the NIR + HEBG/TA/Fe<sub>5</sub> hydrogel could effectively promoting granulation and vascularization, improving collagen deposition in infected wounds thereby accelerating the healing process. These findings indicate that mixed hydrogels exhibit potential as viable options for the treatment of bacterial infections.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"348 \",\"pages\":\"Article 122898\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014486172401124X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014486172401124X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Bacterial infection severely hinders skin wound healing, highlighting the critical application value of developing antibacterial and anti-inflammatory hydrogel dressings. In this work, we focused on β-glucan from Hericium erinaceus (HEBG) as the research object, and proposed a solvent-induced combined temperature manipulation technique to trigger multilevel self-assembly of β-glucan. Furthermore, we incorporated green synthesized near-infrared photosensitizer tannic acid (TA)/iron (III) complex into the system. A hydrogel with exceptional antibacterial properties, capable of responding to near-infrared photothermal stimuli while exhibiting remarkable stiffness and structural consistency, was successfully synthesized. Under near-infrared radiation, HEBG/TA/Fe hydrogels produced local hyperthermia and exhibited excellent antibacterial activity against bacteria-infected wounds. Moreover, the HEBG/TA/Fe hydrogel demonstrates its ability to regulate cytokines by effectively inhibiting the production of inflammatory mediators TNF-α and IL-6, while simultaneously enhancing the expression of cell proliferation factor KI-67 and markers associated with angiogenesis such as CD31 and α-SMA. Notably, the results of tissue staining revealed that the NIR + HEBG/TA/Fe5 hydrogel could effectively promoting granulation and vascularization, improving collagen deposition in infected wounds thereby accelerating the healing process. These findings indicate that mixed hydrogels exhibit potential as viable options for the treatment of bacterial infections.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.