弱矩条件下的最小二乘回归

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Hongzhi Tong
{"title":"弱矩条件下的最小二乘回归","authors":"Hongzhi Tong","doi":"10.1016/j.cam.2024.116336","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider the robust regression problem when the output variable may be heavy-tailed. In such scenarios, the traditional least squares regression paradigm is usually thought to be not a good choice as it lacks robustness to outliers. By projecting the outputs onto an adaptive interval, we show the regularized least squares regression can still work well when the conditional distribution satisfies a weak moment condition. Fast convergence rates in various norm are derived by tuning the projection scale parameter and regularization parameter in according with the sample size and the moment condition.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"458 ","pages":"Article 116336"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Least squares regression under weak moment conditions\",\"authors\":\"Hongzhi Tong\",\"doi\":\"10.1016/j.cam.2024.116336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we consider the robust regression problem when the output variable may be heavy-tailed. In such scenarios, the traditional least squares regression paradigm is usually thought to be not a good choice as it lacks robustness to outliers. By projecting the outputs onto an adaptive interval, we show the regularized least squares regression can still work well when the conditional distribution satisfies a weak moment condition. Fast convergence rates in various norm are derived by tuning the projection scale parameter and regularization parameter in according with the sample size and the moment condition.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 116336\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005843\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005843","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑的是输出变量可能是重尾变量时的稳健回归问题。在这种情况下,传统的最小二乘回归范式通常被认为不是一个好的选择,因为它缺乏对异常值的鲁棒性。通过将输出投影到一个自适应区间,我们证明了当条件分布满足弱矩形条件时,正则化最小二乘回归仍能很好地发挥作用。通过根据样本大小和矩条件调整投影比例参数和正则化参数,我们得出了各种常模下的快速收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Least squares regression under weak moment conditions
In this paper we consider the robust regression problem when the output variable may be heavy-tailed. In such scenarios, the traditional least squares regression paradigm is usually thought to be not a good choice as it lacks robustness to outliers. By projecting the outputs onto an adaptive interval, we show the regularized least squares regression can still work well when the conditional distribution satisfies a weak moment condition. Fast convergence rates in various norm are derived by tuning the projection scale parameter and regularization parameter in according with the sample size and the moment condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信